K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2021

a) TH1: sinx = 1 

--> x = pi/2 + k2pi (k nguyên)

TH2: sinx = -3 (loại)

14 tháng 9 2021

b) 2cosx + cos2x = 0

<=> 2cosx + 2cos^2(x) - 1 = 0

TH1: cosx = (-1 + sqrt(3))/2

TH2: cosx = (-1 - sqrt(3))/2 (loại)

NV
21 tháng 9 2020

a. ĐKXĐ: ...

\(1+cot^2x=\frac{2}{tanx}\)

\(\Leftrightarrow1+cot^2x=2cotx\)

\(\Leftrightarrow\left(cotx-1\right)^2=0\Leftrightarrow cotx=1\)

\(\Rightarrow x=\frac{\pi}{4}+k\pi\)

b. ĐKXĐ: ...

\(cosx\left(\frac{sinx}{cosx}+2cosx\right)-2=0\)

\(\Leftrightarrow sinx+2cos^2x-2=0\)

\(\Leftrightarrow sinx-2\left(1-cos^2x\right)=0\)

\(\Leftrightarrow sinx-2sin^2x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\sinx=\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)

NV
8 tháng 6 2020

a/ \(y'=6sinx.cosx.sin3x+9sin^2x.cos3x\)

b/ \(y'=-\frac{2\left(1+cotx\right)}{sin^2x}\)

c/ \(y'=-sin^3x+2sinx.cos^2x\)

d/ \(y'=\frac{tanx}{cos^2x\sqrt{2+tan^2x}}\)

NV
5 tháng 2 2020

\(\Leftrightarrow tan^2x-2+cot^2x+\frac{2}{tan2x}=0\)

\(\Leftrightarrow\left(tanx-cotx\right)^2+\frac{1-tan^2x}{tanx}=0\)

\(\Leftrightarrow\left(\frac{1-tan^2x}{tanx}\right)^2+\frac{1-tan^2x}{tanx}=0\)

\(\Leftrightarrow t^2+t=0\)

NV
4 tháng 10 2020

1.

\(\Leftrightarrow3x=k\pi\Leftrightarrow x=\frac{k\pi}{3}\)

2.

\(\Leftrightarrow cos5x=0\Leftrightarrow5x=\frac{\pi}{2}+k\pi\Leftrightarrow x=\frac{\pi}{10}+\frac{k\pi}{5}\)

4.

\(cos3x+cosx+cos2x=0\)

\(\Leftrightarrow2cos2x.cosx+cos2x=0\)

\(\Leftrightarrow cos2x\left(2cosx+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\cosx=-\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+\frac{k\pi}{2}\\x=\pm\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)

NV
4 tháng 10 2020

5.

\(sin6x+sin2x+sin4x=0\)

\(\Leftrightarrow2sin4x.cos2x+sin4x=0\)

\(\Leftrightarrow sin4x\left(2cos2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin4x=0\\cos2x=-\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{k\pi}{4}\\x=\pm\frac{\pi}{3}+k\pi\end{matrix}\right.\)

6. ĐKXĐ; ...

\(\Leftrightarrow tanx+tan2x=1-tanx.tan2x\)

\(\Leftrightarrow\frac{tanx+tan2x}{1-tanx.tan2x}=1\)

\(\Leftrightarrow tan3x=1\)

\(\Leftrightarrow x=\frac{\pi}{12}+\frac{k\pi}{3}\)

NV
26 tháng 8 2020

ĐKXĐ: \(sin2x\ne0\)

Ta có: \(VT=tan^2x+cot^2x=\left(tanx-cotx\right)^2+2\ge2\)

Lại có \(cos^2\left(3x+\frac{\pi}{4}\right)\le1\) ;\(\forall x\Rightarrow VP=1+cos^2\left(3x+\frac{\pi}{4}\right)\le2\)

Đẳng thức xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}tanx=cotx\\cos^2\left(3x+\frac{\pi}{4}\right)=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}tanx=tan\left(\frac{\pi}{2}-x\right)\\sin\left(3x+\frac{\pi}{4}\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{\pi}{2}-x+k\pi\\3x+\frac{\pi}{4}=k\pi\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{\pi}{4}+\frac{k\pi}{2}\\x=-\frac{\pi}{12}+\frac{k\pi}{3}\end{matrix}\right.\)

\(\Rightarrow x=\frac{\pi}{4}+k\pi\)

NV
26 tháng 8 2020

ĐKXĐ: ...

\(\Leftrightarrow\left(tan^2x-1\right)\left(tan^2x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}tan^2x=1\\tan^2x=3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}sin^2x=cos^2x\\sin^2x=3cos^2x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}cos^2x-sin^2x=0\\\frac{1}{2}-\frac{1}{2}cos2x=\frac{3}{2}+\frac{3}{2}cos2x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\cos2x=-\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+\frac{k\pi}{2}\\x=\pm\frac{\pi}{3}+k\pi\end{matrix}\right.\)