Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\ge1\)
\(\left(\sqrt{x-1}-1\right)+\left(\sqrt{x+7}-3\right)+\left(x^2-3x+2\right)=0\)
\(\Leftrightarrow\dfrac{x-2}{\sqrt{x-1}+1}+\dfrac{x-2}{\sqrt{x+7}+3}+\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(\dfrac{1}{\sqrt{x-1}+1}+\dfrac{1}{\sqrt{x+7}+3}+x-1\right)=0\)
\(\Leftrightarrow x-2=0\)
ĐKXĐ: \(x\ge\dfrac{5}{2}\)
\(\sqrt{2x-4+2\sqrt{2x-5}}+\sqrt{2x+4+6\sqrt{2x-5}}=14\)
\(\Leftrightarrow\sqrt{\left(\sqrt{2x-5}+1\right)^2}+\sqrt{\left(\sqrt{2x-5}+3\right)^2}=14\)
\(\Leftrightarrow\left|\sqrt{2x-5}+1\right|+\left|\sqrt{2x-3}+3\right|=14\)
\(\Leftrightarrow2\sqrt{2x-5}=10\)
\(\Leftrightarrow\sqrt{2x-5}=5\)
\(\Leftrightarrow2x-5=25\)
\(\Leftrightarrow x=15\)
Lời giải:
ĐKXĐ: $-10\leq x\leq 8$
$x^2+2x+7=(x+1)^2+6\geq 6(1)$
Áp dụng BĐT Bunhiacopxky:
$(\sqrt{8-x}+\sqrt{x+10})^2\leq (8-x+x+10)(1+1)=36$
$\Rightarrow \sqrt{8-x}+\sqrt{x+10}\leq 6(2)$
Từ $(1); (2)\Rightarrow \sqrt{8-x}+\sqrt{x+10}\leq 6\leq x^2+2x+7$
Để pt xảy ra thì $\sqrt{8-x}+\sqrt{x+10}=6=x^2+2x+7$
$\Leftrightarrow x=-1$
ĐKXĐ : -10 \(\le x\le8\)
Ta có \(3\sqrt{8-x}+3\sqrt{10+x}\le\dfrac{3^2+8-x}{2}+\dfrac{3^2+10+x}{2}=18\)
(BĐT Cauchy)
=> \(\sqrt{8-x}+\sqrt{10+x}\le6\)
=> VT \(\le6\) (1)
Lại có VP = x2 + 2x + 7 = (x + 1)2 + 6 \(\ge6\) (2)
Từ (1) (2) => Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}3=\sqrt{8-x}\\3=\sqrt{10+x}\\x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\x=-1\\x=-1\end{matrix}\right.\Leftrightarrow x=-1\)
Vậy x = -1 là nghiệm phương trình
<=>\(\left\{{}\begin{matrix}\sqrt{5}x-2y=7\\\sqrt{5}x-5y=10\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}-3y=3\\\sqrt{5}x-2y=7\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}y=-1\\x=\sqrt{5}\end{matrix}\right.\)
KL: vậy hpt có ngiệm là \(\left\{{}\begin{matrix}x=\sqrt{5}\\y=-1\end{matrix}\right.\)
\(\sqrt{x^2-\frac{7}{x^2}}+\sqrt{x-\frac{7}{x^2}}=x\)
\(\Leftrightarrow\sqrt{x^2-\frac{7}{x^2}}+\sqrt{x-\frac{7}{x^2}}-\sqrt{x-\frac{7}{x^2}}=x-\sqrt{x-\frac{7}{x^2}}\)
\(\Leftrightarrow\left(\sqrt{x^2-\frac{7}{x^2}}\right)^2=\left(x-\sqrt{x-\frac{7}{x^2}}\right)^2\)
\(\Leftrightarrow x^2-\frac{7}{x^2}=x^2-2\sqrt{x-\frac{7}{x^2}}.x+x-\frac{7}{x^2}\)
\(\Leftrightarrow2\sqrt{x-\frac{7}{x^2}}.x-x=0\)
\(\Leftrightarrow x\left(2\sqrt{x-\frac{7}{x^2}}-1=0\right)\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\left(ktm\right)\\x=2\left(tm\right)\end{cases}}\)
=> x = 2
\(\sqrt{x^2}=7\Rightarrow\left|x\right|=7\Rightarrow x=\pm7\)
x=7