Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\ge\dfrac{3}{2}\)
\(16x^2-48x+35+\left(\sqrt{6x-9}-\sqrt{2x-2}\right)=0\)
\(\Leftrightarrow\left(4x-7\right)\left(4x-5\right)+\dfrac{4x-7}{\sqrt{6x-9}+\sqrt{2x-2}}=0\)
\(\Leftrightarrow\left(4x-7\right)\left(4x-5+\dfrac{1}{\sqrt{6x-9}+\sqrt{2x-2}}\right)=0\)
\(\Leftrightarrow4x-7=0\)
Lời giải:
ĐKXĐ: $x\geq \frac{1}{2}$
PT $\Leftrightarrow (3x^2-10x-25)=2(x+3)(\sqrt{2x-1}-3)$
$\Leftrightarrow (x-5)(3x+5)=2(x+3).\frac{2(x-5)}{\sqrt{2x-1}+3}$
\(\Leftrightarrow (x-5)\left[(3x+5)-\frac{4(x+3)}{\sqrt{2x-1}+3}\right]=0\)
Xét biểu thức trong ngoặc vuông:
\(\Leftrightarrow (3x+5)(\sqrt{2x-1}+3)=4(x+3)\)
\(\Leftrightarrow (3x+5)\sqrt{2x-1}=-(3+5x)\)
Dễ thấy điều này vô lý vì với $x\geq \frac{1}{2}$ thì vế trái không âm còn vế phải âm.
Vậy $x-5=0\Leftrightarrow x=5$
9) Sửa: \(2\sqrt{8\sqrt{3}}-2\sqrt{5\text{ }\sqrt{3}}-3\sqrt{20\sqrt{3}}\)
\(=2\sqrt{2^2\cdot2\sqrt{3}}-2\sqrt{5\sqrt{3}}-3\sqrt{2^2\cdot5\sqrt{3}}\)
\(=2\cdot2\sqrt{2\sqrt{3}}-2\sqrt{5\sqrt{3}}-3\cdot2\sqrt{5\sqrt{3}}\)
\(=4\sqrt{2\sqrt{3}}-2\sqrt{5\sqrt{3}}-6\sqrt{5\sqrt{3}}\)
\(=4\sqrt{2\sqrt{3}}-8\sqrt{5\sqrt{3}}\)
10) \(\sqrt{12x}-\sqrt{48x}-3\sqrt{3x}+27\)
\(=\sqrt{2^2\cdot3x}-\sqrt{4^2\cdot3x}-3\sqrt{3x}+27\)
\(=2\sqrt{3x}-4\sqrt{3x}-3\sqrt{3x}+27\)
\(=-5\sqrt{3x}++27\)
11) \(\sqrt{18x}-5\sqrt{8x}+7\sqrt{18x}+28\)
\(=\sqrt{3^2\cdot2x}-5\sqrt{2^2\cdot2x}+7\sqrt{3^2\cdot2x}+28\)
\(=3\sqrt{2x}-5\cdot2\sqrt{2x}+7\cdot3\sqrt{2x}+28\)
\(=3\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}+28\)
\(=14\sqrt{2x}+28\)
12) \(\sqrt{45a}-\sqrt{20a}+4\sqrt{45a}+\sqrt{a}\)
\(=\sqrt{3^2\cdot5a}-\sqrt{2^2\cdot5a}+4\sqrt{3^2\cdot5a}+\sqrt{a}\)
\(=3\sqrt{5a}-2\sqrt{5a}+4\cdot3\sqrt{5a}+\sqrt{a}\)
\(=3\sqrt{5a}-2\sqrt{5a}+12\sqrt{5a}+\sqrt{a}\)
\(=13\sqrt{5a}+\sqrt{a}\)
a.\(2\sqrt{12x}-3\sqrt{3x}+4\sqrt{48x}=17\)
=>\(4\sqrt{3x}-3\sqrt{3x}+16\sqrt{3x}=17\)
=>\(17\sqrt{3x}=17\)
=>\(\sqrt{3x}=1\)
=>\(x=\dfrac{1}{3}\)
\(\sqrt{x}+\sqrt{x-5}+\sqrt{x+7}=9\)
Đk: \(x\ge5\)
\(\Leftrightarrow\sqrt{x}-3+\sqrt{x-5}-2+\sqrt{x+7}-4=0\)
\(\Leftrightarrow\frac{x-9}{\sqrt{x}+3}+\frac{x-5-4}{\sqrt{x-5}+2}+\frac{x+7-16}{\sqrt{x+7}+4}=0\)
\(\Leftrightarrow\frac{x-9}{\sqrt{x}+3}+\frac{x-9}{\sqrt{x-5}+2}+\frac{x-9}{\sqrt{x+7}+4}=0\)
\(\Leftrightarrow\left(x-9\right)\left(\frac{1}{\sqrt{x}+3}+\frac{1}{\sqrt{x-5}+2}+\frac{1}{\sqrt{x+7}+4}\right)=0\)
Dễ thấy: \(\frac{1}{\sqrt{x}+3}+\frac{1}{\sqrt{x-5}+2}+\frac{1}{\sqrt{x+7}+4}>0\)
\(\Rightarrow x-9=0\Rightarrow x=9\) (thỏa)
ĐKXĐ: \(\left\{{}\begin{matrix}x-7>=0\\9-x>=0\end{matrix}\right.\)
=>7<=x<=9
\(\sqrt{x-7}+\sqrt{9-x}=3x^2-48x+194\)
=>\(\sqrt{x-7}-1+\sqrt{9-x}-1=3x^2-48x+192\)
=>\(\dfrac{x-7-1}{\sqrt{x-7}+1}+\dfrac{9-x-1}{\sqrt{9-x}+1}=3\left(x^2-16x+64\right)\)
=>\(\dfrac{x-8}{\sqrt{x-7}+1}-\dfrac{x-8}{\sqrt{9-x}+1}-3\left(x-8\right)^2=0\)
=>\(\left(x-8\right)\left(\dfrac{1}{\sqrt{x-7}+1}-\dfrac{1}{\sqrt{9-x}+1}-3x+24\right)=0\)
=>x-8=0
=>x=8(nhận)
Cảm ơn!!!