\(\sqrt{x-2}+\sqrt{4-x}=2x^2-5x-1\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: \(\Leftrightarrow\left(x^2+5x+4\right)=5\sqrt{x^2+5x+28}\)

Đặt \(x^2+5x+4=a\) 

Theo đề, ta có \(5\sqrt{a+24}=a\)

=>25a+600=a2

=>a=40 hoặc a=-15

=>x2+5x-36=0

=>(x+9)(x-4)=0

=>x=4 hoặc x=-9

c: \(\Leftrightarrow x^2+5x=2\sqrt[3]{x^2+5x-2}-2\)

Đặt \(x^2+5x=a\)

Theo đề, ta có: \(a=2\sqrt[3]{a}-2\)

\(\Leftrightarrow\sqrt[3]{8a}=a+2\)

=>(a+2)3=8a

=>\(a^3+6a^2+12a+8-8a=0\)

\(\Leftrightarrow a^3+6a^2+4a+8=0\)

Đến đây thì bạn chỉ cần bấm máy là xong

NV
1 tháng 9 2020

c/

\(\Leftrightarrow\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+9}=5-\left(x+1\right)^2\)

Do \(\left(x+1\right)^2\ge0\) ;\(\forall x\)

\(\Rightarrow\left\{{}\begin{matrix}\sqrt{3\left(x+1\right)^2+4}\ge\sqrt{0+4}=2\\\sqrt{5\left(x+1\right)^2+9}\ge\sqrt{0+9}=3\end{matrix}\right.\)

\(\Rightarrow VT\ge5\)

\(VP=5-\left(x+1\right)^2\le5\)

\(\Rightarrow VT\ge VP\)

Dấu "=" xảy ra khi và chỉ khi: \(\left(x+1\right)^2=0\Leftrightarrow x=-1\)

NV
1 tháng 9 2020

a/ ĐKXĐ: \(x\ge2\)

\(\Leftrightarrow\sqrt{x+1}=1+\sqrt{x-2}\)

\(\Leftrightarrow x+1=1+x-2+2\sqrt{x-2}\)

\(\Leftrightarrow\sqrt{x-2}=1\)

\(\Leftrightarrow x=3\)

b/ ĐKXĐ: \(x^2\ge2\)

Đặt \(\sqrt{x^2-2}=t\ge0\Rightarrow x^2=t^2+2\)

Pt trở thành: \(t^2+2-t=4\)

\(\Leftrightarrow t^2-t-2=0\Rightarrow\left[{}\begin{matrix}t=-1\left(l\right)\\t=2\end{matrix}\right.\)

\(\Rightarrow\sqrt{x^2-2}=2\Leftrightarrow x^2=6\Rightarrow x=\pm\sqrt{6}\)

NV
26 tháng 9 2020

a/ ĐKXĐ: \(x\ge\frac{3}{4}\)

\(\Leftrightarrow6x+1+2\sqrt{5x^2+5x}=6x+1+2\sqrt{8x^2+10x-12}\)

\(\Leftrightarrow\sqrt{5x^2+5x}=\sqrt{8x^2+10x-12}\)

\(\Leftrightarrow5x^2+5x=8x^2+10x-12\)

\(\Leftrightarrow3x^2+5x-12=0\Rightarrow\left[{}\begin{matrix}x=-3< \frac{3}{4}\left(l\right)\\x=\frac{4}{3}\end{matrix}\right.\)

b/ \(\Leftrightarrow x^2+x+1+2\sqrt{x^2+x+1}-3=0\)

Đặt \(\sqrt{x^2+x+1}=t>0\)

\(\Rightarrow t^2+2t-3=0\Rightarrow\left[{}\begin{matrix}t=1\\t=-3\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x^2+x+1}=1\)

\(\Leftrightarrow x^2+x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

NV
14 tháng 9 2020

ĐKXĐ: \(\frac{5}{2}\le x\le4\)

\(\Leftrightarrow\sqrt{x-2}-1+\sqrt{2x-5}-1=2x^2-5x-3+1-\sqrt{4-x}\)

\(\Leftrightarrow\frac{x-3}{\sqrt{x-2}+1}+\frac{2\left(x-3\right)}{\sqrt{2x-5}+1}=\left(2x+1\right)\left(x-3\right)+\frac{x-3}{1+\sqrt{4-x}}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\\frac{1}{\sqrt{x-2}+1}+\frac{2}{\sqrt{2x-5}+1}=2x+1+\frac{1}{1+\sqrt{4-x}}\left(1\right)\end{matrix}\right.\)

Xét (1), ta có \(VT< 3\) , mà \(x\ge\frac{5}{2}\Rightarrow2x+1>6>3\Rightarrow VP>3\)

Vậy (1) vô nghiệm hay pt có nghiệm duy nhất \(x=3\)

2 tháng 9 2020

b) \(x^4+\sqrt{x^2+2014}=2014\)

\(\Leftrightarrow4x^4+4\sqrt{x^2+2014}=8056\)

\(\Leftrightarrow4x^4=8056-4\sqrt{x^2+2014}\)

\(\Leftrightarrow4x^4+4x^2+1=4x^2+8056-4\sqrt{x^2+2014}+1\)

\(\Leftrightarrow\left(2x^2+1\right)^2=\left(2\sqrt{x^2+2014}-1\right)^2\)

Đến đây quen thuộc rồi nhé !

Câu a) bạn tham khảo ở link này mình đã làm : https://olm.vn/hoi-dap/detail/12190742084.html