K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2021

`\sqrt{x+3}+\sqrt{6-x}=\sqrt{(x+3)(6-x)}+3(-3<=x<=6)`

`<=>x+3+6-x=(x+3)(6-x)+9+6\sqrt{(x+3)(6-x)}`

`<=>9=9+(x+3)(6-x)+6\sqrt{(x+3)(6-x)}`

`<=>(x+3)(6-x)+6\sqrt{(x+3)(6-x)}=0`

`<=>\sqrt{(x+3)(6-x)}(\sqrt{(x+3)(6-x)}+6)=0`

`<=>\sqrt{(x+3)(6-x)}=0`

`<=>x=-3\or\x=6`

Vậy `S={-3,6}`

NV
8 tháng 4 2021

a.

ĐKXĐ: \(1\le x\le7\)

\(\Leftrightarrow x-1-2\sqrt{x-1}+2\sqrt{7-x}-\sqrt{\left(x-1\right)\left(7-x\right)}=0\)

\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-1}-2\right)-\sqrt{7-x}\left(\sqrt{x-1}-2\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-\sqrt{7-x}\right)\left(\sqrt{x-1}-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=\sqrt{7-x}\\\sqrt{x-1}=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=7-x\\x-1=4\end{matrix}\right.\)

\(\Leftrightarrow...\)

NV
8 tháng 4 2021

b. ĐKXĐ: ...

Biến đổi pt đầu:

\(x\left(y-1\right)-\left(y-1\right)^2=\sqrt{y-1}-\sqrt{x}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x}=a\ge0\\\sqrt{y-1}=b\ge0\end{matrix}\right.\)

\(\Rightarrow a^2b^2-b^4=b-a\)

\(\Leftrightarrow b^2\left(a+b\right)\left(a-b\right)+a-b=0\)

\(\Leftrightarrow\left(a-b\right)\left(b^2\left(a+b\right)+1\right)=0\)

\(\Leftrightarrow a=b\)

\(\Leftrightarrow\sqrt{x}=\sqrt{y-1}\Rightarrow y=x+1\)

Thế vào pt dưới:

\(3\sqrt{5-x}+3\sqrt{5x-4}=2x+7\)

\(\Leftrightarrow3\left(x-\sqrt{5x-4}\right)+7-x-3\sqrt{5-x}=0\)

\(\Leftrightarrow\dfrac{3\left(x^2-5x+4\right)}{x+\sqrt{5x-4}}+\dfrac{x^2-5x+4}{7-x+3\sqrt{5-x}}=0\)

\(\Leftrightarrow\left(x^2-5x+4\right)\left(\dfrac{3}{x+\sqrt{5x-4}}+\dfrac{1}{7-x+3\sqrt{5-x}}\right)=0\)

\(\Leftrightarrow...\)

27 tháng 11 2021

\(a,ĐK:1\le x\le3\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x-1}=a\\\sqrt{3-x}=b\end{matrix}\right.\left(a,b\ge0\right)\)

\(PT\Leftrightarrow a+b-ab=1\Leftrightarrow a+b-ab-1=0\\ \Leftrightarrow\left(a-1\right)\left(1-b\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a=1\\b=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-1=1\\3-x=1\end{matrix}\right.\Leftrightarrow x=2\left(tm\right)\)

\(b,ĐK:0\le x\le9\\ PT\Leftrightarrow9+2\sqrt{x\left(9-x\right)}=-x^2+9x+9\\ \Leftrightarrow2\sqrt{-x^2+9x}-\left(-x^2+9x\right)=0\\ \Leftrightarrow\sqrt{-x^2+9x}\left(2-\sqrt{-x^2+9x}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}-x^2+9x=0\\\sqrt{-x^2+9x}=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=9\\x^2-9x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(n\right)\\x=9\left(n\right)\\x=\dfrac{9+\sqrt{65}}{2}\left(n\right)\\x=\dfrac{9-\sqrt{65}}{2}\left(n\right)\end{matrix}\right.\)

 

4 tháng 2 2016

ĐKXĐ: x>=0

PT đã cho <=>\(\left(\sqrt[3]{x^2+26}-3\right)+\left(\sqrt{x+3}-2\right)+\left(3\sqrt{x}-3\right)=0\)

<=>\(\frac{\left[\left(\sqrt[3]{x^2+26}\right)^3-27\right]}{\sqrt[3]{\left(x^2-26\right)^2}+3\sqrt[3]{x^2-26}+9}+\frac{\left[\left(\sqrt{x+3}\right)^2-4\right]}{\sqrt{x+3}+3}+\frac{3.\left[\left(\sqrt{x}\right)^2-1\right]}{\sqrt{x}+1}\)=0

<=>\(\frac{x^2-1}{\sqrt[3]{\left(x^2+26\right)^2}+3\sqrt{x^2+26}+9}+\frac{x-1}{\sqrt{x+3}+3}+\frac{3.\left(x-1\right)}{\sqrt{x}+1}=0\)

<=>(x-1)\(\left(\frac{x+1}{\sqrt[3]{\left(x^2+26\right)^2}+3\sqrt{x^2+26}+9}+\frac{1}{\sqrt{x+3}+3}+\frac{3}{\sqrt{x}+1}\right)=0\)

<=>x=1

4 tháng 2 2016

Bạn không hiểu chắc chưa học đến phương pháp "liên hợp" hả . 
 

28 tháng 11 2021

Tớ đã trả lời ở câu hỏi mới nhất r nên xin phép được xóa câu hỏi này nhé

5 tháng 2 2020

theo mình thì giải thế này

đặt \(x+1=a\)

\(\Rightarrow\sqrt[3]{a}+\sqrt[3]{a+1}=\sqrt[3]{2x^2}+\sqrt[3]{2x^2+1}\)

xét hàm suy ra \(f\left(a\right)=f\left(2x\right)\)

hay 2x = a hay x+1 = 2x suy ra x=1

vậy S = (1)

5 tháng 2 2020

thiếu nghiệm

\(2x^2=a\Leftrightarrow2x^2-x-1=0\Leftrightarrow\left\{{}\begin{matrix}x=1\\x=-\frac{1}{2}\end{matrix}\right.\)