Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ĐKXD:\left\{{}\begin{matrix}2x^2+5x-3\ge0\\2x-1\ge0\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}2x^2+6x-x-3\ge0\\2x\ge1\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}2x\left(x+3\right)-\left(x+3\right)\ge0\\x\ge\dfrac{1}{2}\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}\left(x+3\right)\left(2x-1\right)\ge0\\x\ge\dfrac{1}{2}\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}\left[{}\begin{matrix}\left\{{}\begin{matrix}x+3\ge0\\2x-1\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x+3\le0\\2x-1\le0\end{matrix}\right.\end{matrix}\right.\\x\ge\dfrac{1}{2}\end{matrix}\right.\)
\(< =>\left\{{}\begin{matrix}\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge-3\\x\ge\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x\le-3\\x\le\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\\x\ge\dfrac{1}{2}\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge\dfrac{1}{2}\\x\le-3\end{matrix}\right.\\x\ge\dfrac{1}{2}\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}x\le-3\\x\ge\dfrac{1}{2}\end{matrix}\right.\)
ĐK: `{(3x+4>=0),(1+2x>=0),(x+3>=0):}<=> {(x>=-4/3),(x>=-1/2),(x>=-3):} <=> x>=-1/2`
1) \(\frac{1}{\sqrt{2x-1}}\)có nghĩa khi \(\hept{\begin{cases}2x-1\ge0\\\sqrt{2x-1}\ne0\end{cases}}\)
\(\Leftrightarrow2x-1>0\)
\(\Leftrightarrow x>\frac{1}{2}\)
\(\sqrt{5-x}\)có nghĩa khi \(5-x\ge0\Leftrightarrow x\ge5\)
Vậy \(ĐKXĐ:\frac{1}{2}>x\ge5\)
2) \(\sqrt{x-\frac{1}{x}}\)có nghĩa khi \(\hept{\begin{cases}x-\frac{1}{x}\ge0\\x>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{x^2}{x}-\frac{1}{x}\ge0\\x>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{x^2-1}{x}\ge0\\x>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2-1\ge0\\x>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2\ge1\\x>0\end{cases}}\)
Vậy \(ĐKXĐ:x\ge1\)
3) \(\sqrt{2x-1}\)có nghĩa khi \(2x-1\ge0\) \(\Leftrightarrow x\ge\frac{1}{2}\)
\(\sqrt{4-x^2}\)có nghĩa khi \(4-x^2\ge0\Leftrightarrow x^2\le4\Leftrightarrow x\le2\)
Vậy \(ĐKXĐ:\frac{1}{2}\le x\le2\)
4) \(\sqrt{x^2-1}\)có nghĩa khi \(x^2-1\ge0\Leftrightarrow x^2\ge1\Leftrightarrow x\ge1\)
\(\sqrt{9-x^2}\)có nghĩa khi \(9-x^2\ge0\Leftrightarrow x^2\le9\Leftrightarrow x\le3\)
Vậy \(ĐKXĐ:1\le x\le3\)
\(\left\{{}\begin{matrix}2\sqrt{x-3}+\frac{12}{y-2x}=8\\3\sqrt{4x-12}+\frac{3}{2x-y}=\frac{9}{2}\end{matrix}\right.\) \(Đkxđ:\left\{{}\begin{matrix}x\ge3\\y\ne2x\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{x-3}+\frac{12}{y-2x}=8\\6\sqrt{x-3}+\frac{3}{2x-y}=\frac{9}{2}\end{matrix}\right.\)
Đặt: \(\left\{{}\begin{matrix}2\sqrt{x-3}=a\left(a>0\right)\\\frac{3}{2x-y}=b\end{matrix}\right.\)
Ta được phương trình mới:
\(\left\{{}\begin{matrix}a-4b=8\\3a+b=\frac{9}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=\frac{3}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{x-3}=2\\\frac{3}{2x-y}=-\frac{3}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3=1\\2x-y=-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=10\end{matrix}\right.\)
Vậy ..........
\(\Leftrightarrow\sqrt{\frac{x+2}{x}}=-2x-4+\frac{3}{x}\)
- Với \(x>0\), đặt \(\left\{{}\begin{matrix}\sqrt{x+2}=a\\\sqrt{\frac{1}{x}}=b\end{matrix}\right.\)
\(\Rightarrow ab=-2a^2+3b^2\)
\(\Leftrightarrow2a^2+ab-3b^2=0\Leftrightarrow\left(a-b\right)\left(2a+3b\right)=0\)
\(\Leftrightarrow a=b\Leftrightarrow x+2=\frac{1}{x}\Leftrightarrow x^2+2x-1=0\)
- Với \(x\le-2\), đặt \(\left\{{}\begin{matrix}\sqrt{-x-2}=a\\\sqrt{-\frac{1}{x}}=b\end{matrix}\right.\)
\(\Rightarrow ab=2a^2-3b^2\Leftrightarrow2a^2-ab-3b^2=0\)
\(\Leftrightarrow\left(a+b\right)\left(2a-3b\right)=0\Leftrightarrow2a=3b\)
\(\Leftrightarrow4\left(-x-2\right)=-\frac{9}{x}\Leftrightarrow...\)
Câu trả lời không mang tính chất khoe kiến thức:)
Điều kiện \(-2\le x\le2.\) Khi đó PT đã cho tương đương với:
\(\frac{\left(\sqrt{2+4}-2\sqrt{2-x}\right)\left(\sqrt{2x+4}+2\sqrt{2-x}\right)}{\sqrt{2x+4}+2\sqrt{2-x}}=\frac{2\left(3x-2\right)}{\sqrt{x^2+4}}\)
\(\Leftrightarrow\frac{2\left(3x-2\right)}{\sqrt{2x+4}+2\sqrt{2-x}}=\frac{2\left(3x-2\right)}{\sqrt{x^2+4}}\Leftrightarrow\)hoặc \(x=\frac{2}{3}\),
hoặc \(\sqrt{2x+4}+2\sqrt{2-x}=\sqrt{x^2+4}\) ( 1 )
Bình phương 2 vế của ( 1 ) ta được:
\(4\sqrt{2\left(2+x\right)\left(2-x\right)}+\left(2-x\right)\left(x+4\right)=0.\)
\(\Leftrightarrow\sqrt{2-x}\left(4\sqrt{2\left(2+x\right)}+\left(x+4\right)\sqrt{2-x}\right)=0.\) ( 2 )
Dễ thấy \(4\sqrt{2\left(2+x\right)}+\left(x+4\right)\sqrt{2-x>0}\) với \(-2\le x\le2\), do đó từ ( 2 ) suy ra \(x=2\) ( thỏa mãn ). Vậy PT đã cho có 2 nghiệm \(x=\frac{2}{3}\)hoặc \(x=2.\)
\(\sqrt{\frac{x-4}{2x+3}}=2\)
\(\Leftrightarrow\left(\sqrt{\frac{x-4}{2x+3}}\right)^2=2^2\)
\(\Leftrightarrow\frac{x-4}{2x+3}=4\)
\(\Leftrightarrow x-4=4\left(2x+3\right)\)
\(\Leftrightarrow x-4=8x+12\)
\(\Leftrightarrow x-8x=12+4\)
\(\Leftrightarrow-7x=16\)
\(\Leftrightarrow x=\frac{16}{-7}=\frac{-16}{7}\)
Vậy tập nghiệm của pt là \(S=\left\{-\frac{16}{7}\right\}\)