\(\sqrt{5x^3+3x^2+3x-2}+\frac{1}{2}=\frac{x^2}{2}+3x\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ĐK: \(x\ge\frac{2}{5}\) 

Ta có \(\sqrt{5x^3+3x^2+3x-2}+\frac{1}{2}=\frac{x^2}{2}+3x\) 

<=> \(\sqrt{\left(5x-2\right)\left(x^2+x+1\right)}=\frac{x^2}{2}+3x-\frac{1}{2}\)  

<=> \(2\sqrt{\left(5x-2\right)\left(x^2+x+1\right)}=x^2+6x-1\)

Đặt \(\sqrt{5x-2}=a\left(a\ge0\right),\sqrt{x^2+x+1}=b\left(b\ge0\right)\) 

=> \(a^2+b^2=5x-2+x^2+x+1=x^2+6x+1\) 

Ta có \(2ab=a^2+b^2\) 

<=> \(\left(a-b\right)^2=0\) <=> a=b

Theo cách đặt ta có \(\sqrt{5x-2}=\sqrt{x^2+x+1}\)

=> \(5x-2=x^2+x+1\) 

<=> \(\left(x-3\right)\left(x-1\right)=0\) 

=> \(\orbr{\begin{cases}x=3\left(TMĐK\right)\\x=1\left(TMĐK\right)\end{cases}}\) 

Vậy

Xin lỗi mk nhầm phải là 

\(a^2+b^2=x^2+6x-1\) 

Sorry

9 tháng 5 2018

a)X=2,81376107

b)X=2

29 tháng 8 2019

a) ĐK: \(x\inℝ\).

Đặt \(\sqrt{x^2-3x+4}=a>0\)

\(x^2-5x+4-\left(2x-1\right)a=0\)

\(\Leftrightarrow a^2-\left(2x-1\right)a-2x=0\)

\(\Leftrightarrow-\left(a+1\right)\left(2x-a\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=-1\left(L\right)\\2x=a\left(C\right)\end{cases}}\)

Xét \(2x=a\Leftrightarrow\hept{\begin{cases}x>0\\a^2=4x^2\end{cases}}\Leftrightarrow\hept{\begin{cases}x>0\\-3x^2-3x+4=0\end{cases}}\Leftrightarrow x=\frac{-3+\sqrt{57}}{6}\) ( đã loại 1 nghiệm vì ko t/m x> 0)

P/s: em ko chắc:v

1 tháng 8 2017

a) Chia tử và mẫu cho x

\(\frac{2}{3x-5+\frac{2}{x}}+\frac{13}{3x+1+\frac{2}{x}}=6\)

Đặt  \(t=3x+\frac{2}{x}\)  thì

\(\frac{2}{t-5}+\frac{13}{t+1}=6\)

Tìm t sau đó tìm x

27 tháng 5 2017

\(\Leftrightarrow5x^3+3x^2+3x-2=\left(\dfrac{x^2}{2}+3x-\dfrac{1}{2}\right)^2\)

\(\Leftrightarrow5x^3+3x^2+3x-2=\dfrac{x^4}{4}+x^2\left(3x-\dfrac{1}{2}\right)+\left(3x-\dfrac{1}{2}\right)^2\)

\(\Leftrightarrow5x^3+3x^2+3x-2=\dfrac{x^4}{4}+3x^3-\dfrac{x^2}{2}+9x^2-3x+\dfrac{1}{4}\)

\(\Leftrightarrow20x^3+12x^2+12x-8=x^4+12x^3-2x^2+36x^2-12x+1\)

\(\Leftrightarrow x^4-8x^3+22x^2-24x+9=0\)

\(\Leftrightarrow\left(x^4-x^3\right)-\left(7x^3-7x^2\right)+\left(15x^2-15x\right)-\left(9x-9\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3-7x^2+15x-9\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[\left(x^3-x^2\right)-\left(6x^2-6x\right)+\left(9x-9\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-1\right)\left(x^2-6x+9\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(x-3\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)^2=0\\\left(x-3\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)

Vậy pt có nghiệm \(x=\left\{1;3\right\}\)

16 tháng 12 2017

a)x=6

b)x=6

d)x=0.2