Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do vế trái dương nên pt chỉ có nghiệm khi \(x\ge\dfrac{3}{4}\), kết hợp điều kiện \(2x^4-3x^2+1\ge0\Rightarrow x\ge1\)
Khi đó:
\(4x-3=\sqrt{2x^4-3x^2+1}+\sqrt{2x^4-x^2}\ge\sqrt{2x^4-3x^2+1+2x^4-x^2}\)
\(\Rightarrow4x-3\ge\sqrt{4x^4-4x^2+1}\)
\(\Rightarrow4x-3\ge\left|2x^2-1\right|=2x^2-1\)
\(\Rightarrow2x^2-4x+2\le0\)
\(\Rightarrow2\left(x-1\right)^2\le0\)
\(\Rightarrow x=1\)
đk: \(-x^4+3x-1\ge0\)
Có \(-\left(x^4+1\right)\le-2x^2\)
\(\Rightarrow\sqrt{-x^4+3x-1}+\sqrt{2x^2-3x+2}\le\sqrt{3x-2x^2}+\sqrt{2x^2-3x+2}\)
Áp dụng bunhia có: \(\sqrt{3x-2x^2}+\sqrt{2x^2-3x+2}\le\sqrt{\left(1+1\right)\left(3x-2x^{^2}+2x^2-3x+2\right)}=2\)
\(\Rightarrow\sqrt{-x^4+3x-1}+\sqrt{2x^2-3x+2}\le2\) (*)
Có: \(x^4-x^2-2x+4=\left(x^4+1\right)-x^2-2x+3\ge2x^2-x^2-2x+3=\left(x-1\right)^2+2\ge2\) (2*)
Từ (*) (2*) dấu = xảy ra khi x=1 (TM)
Vậy x=1
ĐKXĐ : x\(\ge0\)
ADBĐT BCS ta được
\(\left(\frac{x^2}{3}+4\right)\left(3+1\right)\ge\left(x+2\right)^2\)
\(\Rightarrow4\sqrt{\frac{x^2}{3}+4}\ge2x+4\)(do x\(\ge0\)) (1)
Do x\(\ge0\)nên ADBĐT Cauchy ta được:
\(\sqrt{6x}\le\frac{x+6}{2}\)\(\Rightarrow1+\frac{3x}{2}+\sqrt{6x}\le1+\frac{3x}{2}+\frac{x+6}{2}=1+\frac{4x+6}{2}=2x+4\)(2)
Từ (1) và (2) \(\Rightarrow4\sqrt{\frac{x^2}{3}+4}\ge1+\frac{3x}{2}+\sqrt{6x}\)
Dấu = xảy ra \(\Leftrightarrow x=6\)(thỏa mãn ĐKXĐ)
3) ĐKXĐ \(-1\le x\le1\)
Khi đó phương trình đã cho \(\Leftrightarrow4\left(\sqrt{1+x}+\sqrt{1-x}\right)=8-x^2\)
\(\Leftrightarrow\hept{\begin{cases}16\left(2+2\sqrt{1-x^2}\right)=\left(7+1-x^2\right)\left(2\right)\\8-x^2\ge0\end{cases}}\)
Đặt \(\sqrt{1-x^2}=a\ge0\)
Khi đó phương trình (2) trở thành:
\(\hept{\begin{cases}16\left(2+2a\right)=\left(7+a^2\right)\\x^2\le8\end{cases}}\)
\(\Leftrightarrow a^4+14a^2+49=32+32a\)
\(\Leftrightarrow a^4+14a^2-32a+17=0\)
\(\Leftrightarrow a^4-2a^2+1+16a^2-32a+16=0\)
\(\Leftrightarrow\left(a^2-1\right)^2+16\left(a-1\right)^2=0\)
\(\Leftrightarrow a=1\)
hay \(\sqrt{1-x^2}=1\)
\(\Leftrightarrow x=0\)(thỏa mãn)
ĐKXĐ: \(-\dfrac{1}{3}\le x\le4\)
\(2x+9=4-x+3x+1+2\sqrt{\left(4-x\right)\left(3x+1\right)}\)
\(\Leftrightarrow\sqrt{\left(4-x\right)\left(3x+1\right)}=2\)
\(\Leftrightarrow\left(4-x\right)\left(3x+1\right)=4\)
\(\Leftrightarrow3x^2-11x=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{11}{3}\end{matrix}\right.\) (thỏa mãn)
Hung nguyen, Trần Thanh Phương, Sky SơnTùng, @tth_new, @Nguyễn Việt Lâm, @Akai Haruma, @No choice teen
help me, pleaseee
Cần gấp lắm ạ!
nhầm đề : \(\sqrt[4]{x+8}+\sqrt{x+4}=\sqrt{2x+3}+\sqrt{3x}\)
\(\sqrt[4]{x+8}+\sqrt{x+4}=\sqrt{2x+3}+\sqrt{3x}\)
\(\Leftrightarrow\sqrt[4]{x+8}-\sqrt{3}+\sqrt{x+4}-\sqrt{5}=\sqrt{2x+3}-\sqrt{5}+\sqrt{3x}-\sqrt{3}\)
\(\Leftrightarrow\frac{x+8-9}{\sqrt[4]{x+8}^3+\sqrt[4]{x+8}^2\sqrt{3}+3\sqrt[4]{x+8}+\sqrt{3}^3}+\frac{x+4-5}{\sqrt{x+4}+\sqrt{5}}=\frac{2x+3-5}{\sqrt{2x+3}+\sqrt{5}}+\frac{3x-3}{\sqrt{3x}+\sqrt{3}}\)
\(\Leftrightarrow\frac{x-1}{\sqrt[4]{x+8}^3+\sqrt[4]{x+8}^2\sqrt{3}+3\sqrt[4]{x+8}+\sqrt{3}^3}+\frac{x-1}{\sqrt{x+4}+\sqrt{5}}-\frac{2\left(x-1\right)}{\sqrt{2x+3}+\sqrt{5}}-\frac{3\left(x-1\right)}{\sqrt{3x}+\sqrt{3}}=0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{1}{\sqrt[4]{x+8}^3+\sqrt[4]{x+8}^2\sqrt{3}+3\sqrt[4]{x+8}+\sqrt{3}^3}+\frac{1}{\sqrt{x+4}+\sqrt{5}}-\frac{2}{\sqrt{2x+3}+\sqrt{5}}-\frac{31}{\sqrt{3x}+\sqrt{3}}\right)=0\)
Dễ thấy : pt trong ngoặc vô nghiệm
\(\Rightarrow x-1=0\Rightarrow x=1\)