Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 2: ĐK..............
PT $(1)\Rightarrow \sqrt{y+1}=\frac{x-3}{2}$
$\Rightarrow y+1=\frac{(x-3)^2}{4}$
PT $(2)\Leftrightarrow x^3-4x^2\sqrt{y+1}+4x(y+1)-8(y+1)-9x+60=0$
$\Leftrightarrow x^3-4x^2.\frac{x-3}{2}+4x.\frac{(x-3)^2}{4}-8.\frac{(x-3)^2}{4}-9x+60=0$
$\Leftrightarrow x^3-2x^2(x-3)+x(x-3)^2-2(x-3)^2-9x+60=0$
$\Leftrightarrow -x^2+6x+7=0$
$\Leftrightarrow x=7$ hoặc $x=-1$
Từ PT $(1)$ dễ thấy $x\geq 3$ nên $x=7$
$\Rightarrow y=\frac{(x-3)^2}{4}=4$
Vậy...........
Câu 1:
ĐK:..............
PT $\Leftrightarrow x-3+\sqrt{x-1}=\sqrt{2(x^2-5x+5)}$
$\Rightarrow (x-3+\sqrt{x-1})^2=2(x^2-5x+5)$
$\Leftrightarrow 2(x-3)\sqrt{x-1}=x^2-5x+2$
$\Leftrightarrow x^2-5x+2-2(x-3)\sqrt{x-1}=0$
$\Leftrightarrow (x^2-6x+9)+(x-1)-2(x-3)\sqrt{x-1}=6$
$\Leftrightarrow (x-3)^2+(x-1)-2(x-3)\sqrt{x-1}=6$
$\Leftrightarrow (x-3-\sqrt{x-1})^2=6$
$\Leftrightarrow x-3-\sqrt{x-1}=\pm \sqrt{6}$
$\Leftrightarrow \sqrt{x-1}=x-3\pm \sqrt{6}$
$\Rightarrow x-1=(x-3\pm \sqrt{6})^2$ (ĐK: $x\geq 3\pm \sqrt{6}$)
Giải PT ta thu được $x=\frac{1}{2}(7+2\sqrt{6}+\sqrt{9+4\sqrt{6}})$
a: \(\Leftrightarrow\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\cdot3\sqrt{x-2}+6\cdot\dfrac{\sqrt{x-2}}{9}=-4\)
\(\Leftrightarrow\sqrt{x-2}=4\)
=>x-2=16
hay x=18
b: \(\Leftrightarrow\left|3x+2\right|=4x\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+2=4x\left(x>=-\dfrac{2}{3}\right)\\3x+2=-4x\left(x< -\dfrac{2}{3}\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(nhận\right)\\x=-\dfrac{2}{7}\left(nhận\right)\end{matrix}\right.\)
c: \(\Leftrightarrow3\sqrt{x-2}-2\sqrt{x-2}+3\sqrt{x-2}=40\)
\(\Leftrightarrow4\sqrt{x-2}=40\)
=>x-2=100
hay x=102
d: =>5x-6=9
hay x=3
\(\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\sqrt{9x-18}+6\sqrt{\dfrac{x-2}{81}}=-4\) (đk: x≥2)
\(\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\sqrt{9\left(x-2\right)}+6\sqrt{\dfrac{1}{81}\left(x-2\right)}=-4\)
\(\dfrac{1}{3}\sqrt{x-2}-2\sqrt{x-2}+\dfrac{2}{3}\sqrt{x-2}=-4\)
\(\dfrac{1}{3}\sqrt{x-2}-\dfrac{4}{3}\sqrt{x-2}=-4\)
\(-\sqrt{x-2}=-4\)
\(\sqrt{x-2}=4\)
\(\left|x-2\right|=16\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=16\\x-2=-16\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=18\left(TM\right)\\x=-14\left(L\right)\end{matrix}\right.\)
ĐK \(x\le\frac{-5-\sqrt{41}}{8}\)hoặc \(x\ge\frac{1+\sqrt{5}}{2}\)
Nhân liên hợp 2 vế ta có:
=> \(\left(4x^2+5x-1-4x^2+4x+4\right)=3\left(3x+1\right)\left(\sqrt{4x^2+5x-1}+2\sqrt{x^2-x-1}\right)\)<=> \(3\left(3x+1\right)=3\left(3x+1\right)\left(\sqrt{4x^2+5x-1}+2\sqrt{x^2-x-1}\right)\)
<=>\(\left[{}\begin{matrix}x=-\frac{1}{3}\left(koTMĐKXĐ\right)\\\sqrt{4x^2+5x-1}+2\sqrt{x^2-x-1}=1\left(2\right)\end{matrix}\right.\)
Kết hợp (2) với PT ban đầu ta có:
=> \(2\sqrt{4x^2+5x-1}=9x+4\)
=> \(\left\{{}\begin{matrix}x\ge-\frac{4}{9}\\4\left(4x^2+5x-1\right)=81x^2+72x+16\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x\ge-\frac{4}{9}\\65x^2+52x+20=0\end{matrix}\right.\)
=> PT vô nghiệm
Vậy PT vô nghiệm
Đề có sai không vậy ?