K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2021

\(\sqrt{4x^2-12x+9}+3=2x\)

<=>\(\sqrt{4x^2-12x+9}=2x-3\)

<=>\(4x^2-12x+9=\left(2x-3\right)^2\)

<=>\(4x^2-12x+9=4x^2-12x+9\)

<=>\(4x^2-12x+9-4x^2+12x-9=0\)

<=>0=0( luôn đúng )

=> phương trình trên có vô số nghiệm

Vậy phương trình trên có vô số nghiệm

Ta có: \(\sqrt{4x^2-12x+9}+3=2x\)

\(\Leftrightarrow\left|2x-3\right|=2x-3\)

\(\Leftrightarrow2x-3\ge0\)

hay \(x\ge\dfrac{3}{2}\)

17 tháng 9 2021

\(1.\sqrt{16-8x+x^2}=4-x\)

\(\sqrt{\left(4-x\right)^2}=4-x\)

\(4-x-4+x=0\)

= 0 phương trình vô nghiệm.

\(2.\sqrt{4x^2-12x+9}=2x-3\)

\(\)\(\sqrt{\left(2x-3\right)^2}=2x-3\)

\(2x-3-2x+3=0\)

= 0 phương trình vô nghiệm.

a: Ta có: \(\sqrt{16-8x+x^2}=4-x\)

\(\Leftrightarrow\left|4-x\right|=4-x\)

hay \(x\le4\)

b: Ta có: \(\sqrt{4x^2-12x+9}=2x-3\)

\(\Leftrightarrow\left|2x-3\right|=2x-3\)

hay \(x\ge\dfrac{3}{2}\)

1: Ta có: \(\sqrt{4x^2-12x+9}=3-2x\)

\(\Leftrightarrow\left(2x-3\right)^2=\left(3-2x\right)^2\)

\(\Leftrightarrow\left(2x-3\right)^2-\left(3-2x\right)^2=0\)

\(\Leftrightarrow\left[\left(2x-3\right)-\left(3-2x\right)\right]\left[\left(2x-3\right)+\left(3-2x\right)\right]=0\)

\(\Leftrightarrow\left(2x-3-3+2x\right)\left(2x-3+3-2x\right)=0\)

\(\Leftrightarrow\left(4x-6\right)\cdot0=0\)(luôn đúng)

Vậy: S={x|\(x\in R\)}

2) Ta có: \(\sqrt{x^2-2\cdot\sqrt{2}\cdot x+2}=\sqrt{9-4\sqrt{2}}-\sqrt{3+2\sqrt{2}}\)

\(\Leftrightarrow\sqrt{\left(x-\sqrt{2}\right)^2}=\sqrt{8-2\cdot2\sqrt{2}\cdot1+1}-\sqrt{1+2\cdot1\cdot\sqrt{2}+2}\)

\(\Leftrightarrow\sqrt{\left(x-\sqrt{2}\right)^2}=\left|\sqrt{8}-1\right|-\left|1+\sqrt{2}\right|\)

\(\Leftrightarrow\sqrt{\left(x-\sqrt{2}\right)^2}=\sqrt{8}-1-1-\sqrt{2}\)

\(\Leftrightarrow\left|x-\sqrt{2}\right|=\sqrt{2}-2\)(*)

Trường hợp 1: \(x\ge\sqrt{2}\)

(*)\(\Leftrightarrow x-\sqrt{2}=\sqrt{2}-2\)

\(\Leftrightarrow x-\sqrt{2}-\sqrt{2}+2=0\)

\(\Leftrightarrow x-2\sqrt{2}+2=0\)

\(\Leftrightarrow x=2\sqrt{2}-2\)(loại)

Trường hợp 2: \(x< \sqrt{2}\)

(*)\(\Leftrightarrow\sqrt{2}-x=\sqrt{2}-2\)

\(\Leftrightarrow\sqrt{2}-x-\sqrt{2}+2=0\)

\(\Leftrightarrow2-x=0\)

hay x=2(loại)

Vậy: S=∅

16 tháng 12 2020

\(1.4x^2-12x+9=9-12x+4x^2\)

\(0x=0\)

Pt tm với mọi x

11 tháng 2 2016

-9.75332792

11 tháng 2 2016

minh moi hok lop 6 thôi ban ơi

4 tháng 12 2018

a.ĐKXĐ:\(\frac{3}{2}\le x\le\frac{5}{2}\)

AD BĐT Cauchy ta được:

\(\sqrt{\left(2x-3\right)1}\le\frac{2x-3+1}{2}=\frac{2x-2}{2}=x-1\)

\(\sqrt{\left(5-2x\right)\cdot1}\le\frac{5-2x+1}{2}=\frac{6-2x}{2}=3-x\)

Do đó \(\sqrt{2x-3}+\sqrt{5-2x}\le x-1+3-x=2\)(1)

Lại có \(3x^2-12x+14=3\left(x-2\right)^2+2\ge2\)(2)

Từ (1) và (2) suy ra \(\sqrt{2x-3}+\sqrt{5-2x}\le3x^2-12x+14\)

Dấu = khi x=2 (tm ĐKXĐ)

PHẦN b giải tương tự

8 tháng 10 2021

\(c,=2+2\sqrt{3}-\left(2+\sqrt{2}\right)=2\sqrt{3}-\sqrt{2}\\ d,=\sqrt{\left(2x-3\right)^2}-2x+1=\left|2x-3\right|-2x+1\\ =2x-3-2x+1=-2\left(x\ge\dfrac{3}{2}\Leftrightarrow2x-3\ge0\right)\)

9 tháng 6 2019

a)\(ĐKXĐ:x\ge\frac{-1}{2}\)

 \(\sqrt{x^2+4x+4}=2x+1\)

\(\Leftrightarrow\sqrt{\left(x+2\right)^2}=2x+1\)

\(\Leftrightarrow x+2=2x+1\)

\(\Leftrightarrow-x=-1\)

\(\Leftrightarrow x=1\)

Vậy nghiệm duy nhất của phương trình là 1.

9 tháng 6 2019

b)\(ĐKXĐ:x\ge3\)

 \(\sqrt{4x^2-12x+9}=x-3\)

\(\Leftrightarrow\sqrt{\left(2x-3\right)^2}=x-3\)

\(\Leftrightarrow2x-3=x-3\)

\(\Leftrightarrow2x=x\)

\(\Leftrightarrow x=0\)(không t/m đkxđ)

Vậy phương trình vô nghiệm

4 tháng 9 2023

\(\sqrt{4x^2}=3\left(ĐK:4x^2\ge0\forall x\in R\right)\\ \Leftrightarrow\sqrt{\left(2x\right)^2}=3\\ \Leftrightarrow\left|2x\right|=3\\ \Leftrightarrow\left[{}\begin{matrix}2x=-3\\2x=3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\left(tm\right)\\x=\dfrac{3}{2}\left(tm\right)\end{matrix}\right.\)

Vậy \(S=\left\{-\dfrac{3}{2};\dfrac{3}{2}\right\}\)

\(\sqrt{x^2-6x+9}=2\\ \Leftrightarrow\sqrt{\left(x-3\right)^2}=2\left(ĐK:\left(x-3\right)^2\ge0\forall x\in R\right)\\ \Leftrightarrow\left|x-3\right|=2\\ \Leftrightarrow\left[{}\begin{matrix}x-3=2\\x-3=-2\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=2+3\\x=-2-3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\left(tm\right)\\x=-5\left(tm\right)\end{matrix}\right.\)

Vậy \(S=\left(\pm5\right)\)

\(\sqrt{\left(2x-3\right)^2}=6\left(ĐK:\left(2x-3\right)^2\ge0\forall x\in R\right)\\ \Leftrightarrow\left|2x-3\right|=6\\ \Leftrightarrow\left[{}\begin{matrix}2x-3=6\\2x-3=-6\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}2x=3+6\\2x=-6+3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}2x=9\\2x=-3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=4,5\left(tm\right)\\x=-1,5\left(tm\right)\end{matrix}\right.\)

Vậy \(S=\left\{4,5;-1,5\right\}\)

\(\sqrt{25x^2}=100\\ \sqrt{\left(5x\right)^2}=100\left(ĐK:\left(5x\right)^2\ge0\forall x\in R\right)\\\Leftrightarrow \left|5x\right|=100\\ \Leftrightarrow\left[{}\begin{matrix}5x=100\\5x=-100\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=20\left(tm\right)\\x=-20\left(tm\right)\end{matrix}\right.\)

Vậy \(S=\left\{\pm20\right\}\)

15 tháng 9 2023

Phần thứ hai sai mà chẳng ai biết :D

18 tháng 7 2016

Ta có ; \(4x^2+12x=9+7x\sqrt{4x-3}\)(ĐKXĐ : \(x\ge\frac{3}{4}\))

\(\Leftrightarrow4x^2+5x-9=7x\left(\sqrt{4x-3}-1\right)\)

Xét vế trái : \(4x^2+5x-9=4\left(x-1\right)\left(x+\frac{9}{4}\right)=\left[\left(4x-3\right)-1\right]\left(x+\frac{9}{4}\right)=\left(\sqrt{4x-3}-1\right)\left(\sqrt{4x-3}+1\right)\left(x+\frac{9}{4}\right)\)

Suy ra phương trình : \(\left(\sqrt{4x-3}-1\right)\left(\sqrt{4x-3}+1\right)\left(x+\frac{9}{4}\right)=7x\left(\sqrt{4x-3}-1\right)\)

\(\Leftrightarrow\left(\sqrt{4x-3}-1\right)\left[\left(\sqrt{4x-3}+1\right)\left(x+\frac{9}{4}\right)-7x\right]=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{4x-3}-1=0\\\left(\sqrt{4x-3}+1\right)\left(x+\frac{9}{4}\right)-7x=0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=1\\x=3\end{cases}}\)(TMDK)

18 tháng 7 2016

Bài này liên hợp

ĐKXĐ: \(x\ge\frac{3}{4}\)

\(4x^2+12x-16-7x\sqrt{4x-3}+7=0\)

\(\Rightarrow\frac{\left(4x^2+12x\right)^2-16^2}{4x^2+12x+16}-\frac{\left(7x\sqrt{4x-3}\right)^2-7^2}{7x\sqrt{4x-3}+7}=0\)

\(\Rightarrow\frac{16\left(x-1\right)\left(x+4\right)\left(x^2+3x+4\right)}{4x^2+12x+16}-\frac{196x^3-147x^2-49}{7x\sqrt{4x-3}+7}=0\)

\(\Rightarrow\frac{16\left(x-1\right)\left(x+4\right)\left(x^2+3x+4\right)}{4x^2+12x+6}-\frac{\left(x-1\right)\left(4x^2+x+1\right)49}{7x\sqrt{4x-3}+7}=0\)

\(\Rightarrow\left(x-1\right)\left[\frac{16\left(x+4\right)\left(x^2+3x+4\right)}{4x^2+12x+6}-\frac{49\left(4x^2+x+1\right)}{7x\sqrt{4x-3}+7}\right]=0\)

Vì \(\frac{16\left(x+4\right)\left(x^2+3x+4\right)}{4x^2+12x+6}-\frac{49\left(4x^2+x+1\right)}{7x\sqrt{4x-3}+7}>0\)

=> x - 1 = 0 => x = 1

                                                                 Vậy x = 1