Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Đặt \(\sqrt{x^2-6x+6}=a\left(a\ge0\right)\)
\(\Rightarrow a^2+3-4a=0\)
=> (a - 3).(a - 1) = 0
=> \(\left[{}\begin{matrix}a=3\\a=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2-6x+6}=3\\\sqrt{x^2-6x+6}=1\end{matrix}\right.\)
Bình phương lên giải tiếp nhé!
c) Tương tư câu b nhé
a/ ĐKXĐ: ...
\(\Leftrightarrow x+8+\sqrt{x+8}-\left(x+8\right)=\sqrt{x}+\sqrt{x+3}\)
\(\Leftrightarrow\sqrt{x+8}=\sqrt{x}+\sqrt{x+3}\)
\(\Leftrightarrow x+8=2x+3+2\sqrt{x^2+3x}\)
\(\Leftrightarrow5-x=2\sqrt{x^2+3x}\) (\(x\le5\))
\(\Leftrightarrow x^2-10x+25=4\left(x^2+3x\right)\)
\(\Leftrightarrow...\)
b/ ĐKXĐ: \(2\le x\le5\)
\(\Leftrightarrow2\left(x-2\right)+\sqrt{2\left(x-2\right)}\left(\sqrt{5-x}-\sqrt{3x-3}\right)=0\)
\(\Leftrightarrow\sqrt{2\left(x-2\right)}\left(\sqrt{2x-4}+\sqrt{5-x}-\sqrt{3x-3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\\sqrt{2x-4}+\sqrt{5-x}=\sqrt{3x-3}\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow x+1+2\sqrt{\left(2x-4\right)\left(5-x\right)}=3x-3\)
\(\Leftrightarrow\sqrt{\left(2x-4\right)\left(5-x\right)}=x-2\)
\(\Leftrightarrow\left(2x-4\right)\left(5-x\right)=\left(x-2\right)^2\)
\(\Leftrightarrow...\)
c/ ĐKXĐ: \(x\le12\)
\(\Leftrightarrow\sqrt[3]{24+x}\sqrt{12-x}-6\sqrt{12-x}+12-x=0\)
\(\Leftrightarrow\sqrt{12-x}\left(\sqrt[3]{24+x}-6+\sqrt{12-x}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=12\\\sqrt[3]{24+x}+\sqrt{12-x}=6\left(1\right)\end{matrix}\right.\)
Xét (1):
Đặt \(\left\{{}\begin{matrix}\sqrt[3]{24+x}=a\\\sqrt{12-x}=b\ge0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=6\\a^3+b^2=36\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=6-a\\a^3+b^2=36\end{matrix}\right.\)
\(\Leftrightarrow a^3+\left(6-a\right)^2=36\)
\(\Leftrightarrow a^3+a^2-12a=0\)
\(\Leftrightarrow a\left(a^2+a-12\right)=0\Rightarrow\left[{}\begin{matrix}a=0\\a=3\\a=-4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt[3]{24+x}=0\\\sqrt[3]{24+x}=3\\\sqrt[3]{24+x}=-4\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}24+x=0\\24+x=27\\24+x=-64\end{matrix}\right.\)
\(\sqrt{x-5}+\sqrt{x-3}-2\sqrt{x^2+2x-8}+4=0\left(1\right)\\ \Leftrightarrow\sqrt{x-5}+\sqrt{x-3}+4=2\sqrt{x^2+2x-8}\)
ĐKXĐ: \(\left\{{}\begin{matrix}x-5\ge0\\x-3\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge5\\x\ge3\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\sqrt{x-5}+\sqrt{x-3}+4=2\sqrt{x^2+2x-8}\\ \Leftrightarrow\left(\sqrt{x-5}\right)^2+\left(\sqrt{x-3}\right)^2+4^2=\left(2\sqrt{x^2+2x-8}\right)^2\\ \Leftrightarrow x-5+x-3+16=4.\left(x^2+2x-8\right)\\ \Leftrightarrow x-5+x-3+16=4x^2+8x-32\\ \Leftrightarrow x-5+x-3+16-4x^2-8x+32=0\\ \Leftrightarrow-4x^2-6x+40=0\)
Ta có: \(\Delta=b^2-4ac=\left(-6\right)^2-4.\left(-4\right).40=676\)
\(\Rightarrow\left[{}\begin{matrix}x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-\left(-6\right)+\sqrt{676}}{2.\left(-4\right)}=-4\left(nhận\right)\\x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-\left(-6\right)-\sqrt{676}}{2.\left(-4\right)}=\dfrac{5}{2}=2,5\left(loại\right)\end{matrix}\right.\)
Vậy phương trình (1) không có nghiệm thỏa mãn.
Mình nhầm chỗ \(x_1=-4\) là loại mà mình nhấn nhầm là nhận!
a.
ĐKXĐ: \(1\le x\le7\)
\(\Leftrightarrow x-1-2\sqrt{x-1}+2\sqrt{7-x}-\sqrt{\left(x-1\right)\left(7-x\right)}=0\)
\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-1}-2\right)-\sqrt{7-x}\left(\sqrt{x-1}-2\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-\sqrt{7-x}\right)\left(\sqrt{x-1}-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=\sqrt{7-x}\\\sqrt{x-1}=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=7-x\\x-1=4\end{matrix}\right.\)
\(\Leftrightarrow...\)
b. ĐKXĐ: ...
Biến đổi pt đầu:
\(x\left(y-1\right)-\left(y-1\right)^2=\sqrt{y-1}-\sqrt{x}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x}=a\ge0\\\sqrt{y-1}=b\ge0\end{matrix}\right.\)
\(\Rightarrow a^2b^2-b^4=b-a\)
\(\Leftrightarrow b^2\left(a+b\right)\left(a-b\right)+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(b^2\left(a+b\right)+1\right)=0\)
\(\Leftrightarrow a=b\)
\(\Leftrightarrow\sqrt{x}=\sqrt{y-1}\Rightarrow y=x+1\)
Thế vào pt dưới:
\(3\sqrt{5-x}+3\sqrt{5x-4}=2x+7\)
\(\Leftrightarrow3\left(x-\sqrt{5x-4}\right)+7-x-3\sqrt{5-x}=0\)
\(\Leftrightarrow\dfrac{3\left(x^2-5x+4\right)}{x+\sqrt{5x-4}}+\dfrac{x^2-5x+4}{7-x+3\sqrt{5-x}}=0\)
\(\Leftrightarrow\left(x^2-5x+4\right)\left(\dfrac{3}{x+\sqrt{5x-4}}+\dfrac{1}{7-x+3\sqrt{5-x}}\right)=0\)
\(\Leftrightarrow...\)
ĐKXĐ: x>=0
PT đã cho <=>\(\left(\sqrt[3]{x^2+26}-3\right)+\left(\sqrt{x+3}-2\right)+\left(3\sqrt{x}-3\right)=0\)
<=>\(\frac{\left[\left(\sqrt[3]{x^2+26}\right)^3-27\right]}{\sqrt[3]{\left(x^2-26\right)^2}+3\sqrt[3]{x^2-26}+9}+\frac{\left[\left(\sqrt{x+3}\right)^2-4\right]}{\sqrt{x+3}+3}+\frac{3.\left[\left(\sqrt{x}\right)^2-1\right]}{\sqrt{x}+1}\)=0
<=>\(\frac{x^2-1}{\sqrt[3]{\left(x^2+26\right)^2}+3\sqrt{x^2+26}+9}+\frac{x-1}{\sqrt{x+3}+3}+\frac{3.\left(x-1\right)}{\sqrt{x}+1}=0\)
<=>(x-1)\(\left(\frac{x+1}{\sqrt[3]{\left(x^2+26\right)^2}+3\sqrt{x^2+26}+9}+\frac{1}{\sqrt{x+3}+3}+\frac{3}{\sqrt{x}+1}\right)=0\)
<=>x=1
Bạn không hiểu chắc chưa học đến phương pháp "liên hợp" hả .