Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện: x \(\le\)12
Đặt a = \(\sqrt[3]{24+x}\); b = \(\sqrt{12-x}\) ( b > =0)
=> a3 + b2 = 36 (*)
PT <=> a + b = 6 => b = 6 - a
Thay vào (*) <=> a3 + (6 - a)2 = 36
<=> a3 + a2 - 12a = 0
<=> a.(a2 + a - 12)= 0
<=> a(a+ 4)(a - 3) = 0
<=> a = 0 hoặc a = 3 hoặc a = -4
a = 0 => x ....
ĐKXĐ: \(-\frac{3}{2}\le x\le12\)
\(\Leftrightarrow x^2-2x\sqrt{2x+3}+2x+3+12-x-6\sqrt{12-x}+9=0\)
\(\Leftrightarrow\left(x-\sqrt{2x+3}\right)^2+\left(\sqrt{12-x}-3\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\sqrt{2x+3}=0\\\sqrt{12-x}-3=0\end{matrix}\right.\) \(\Rightarrow x=3\)
đề bài đúng không z? theo tôi đề là \(\sqrt{x+2}+\sqrt{6-x}=\sqrt{x^2-8x+24}\)?!
ĐKXĐ:...
Áp dụng BĐT AM-GM:
\(\left(\sqrt{x+2}+\sqrt{6-x}\right)^2\le2\left(x+2+6-x\right)=16\)
\(\Leftrightarrow\sqrt{x+2}+\sqrt{6-x}\le4\)
Lại có \(x^2-8x+24=\left(x-4\right)^2+8\ge8\forall x\)
Vậy pt vô nghiệm.
Điều kiện:`x>=2`
Ta có:
`sqrt{x+6}-sqrt{x-2}=(x+6-x+2)/(sqrt{x+6}+sqrt{x-2})`
`=8/(\sqrt{x+6}+sqrt{x-2})`
`pt<=>8/(sqrt{x+6}+sqrt{x-2})(1+sqrt{(x-2)(x+6)})=8`
`<=>(1+sqrt{(x-2)(x+6)})/(sqrt{x+6}+sqrt{x-2})=1`
`<=>1+sqrt{(x-2)(x+6)}=sqrt{x+6}+sqrt{x-2}`
`<=>sqrt{(x-2)(x+6)}-sqrt{x+6}=sqrt{x-2}-1`
`<=>sqrt{x+6}(sqrt{x-2}-1)=sqrt{x-2}-1`
`<=>(sqrt{x-2}-1)(sqrt{x+6}-1)=0`
Vì `x>=2=>x+6>=8=>sqrt{x+6}>=2sqrt2`
`=>sqrt{x+6}-1>=2sqrt2-1>0`
`<=>sqrt{x-2}=1`
`<=>x=3(tm)`
Vậy `S={3}`
5 .\(\frac{x}{\sqrt{2\left(y^2+z^2\right)-x^2}}=\frac{\sqrt{3}x^2}{\sqrt{3}x\sqrt{2\left(y^2+z^2\right)-x^2}}\ge\frac{\sqrt{3}x^2}{x^2+y^2+z^2}\)
TT=>VT2>=VP2
6.\(1+\sqrt{y-1}\ge1\)
\(\frac{1}{y^2}-\left(x+z\right)^2\le1\)
=>VT1>=VP1
10b pt1\(\Leftrightarrow\left(y-3x\right)\left(y^2-y+1\right)=0\)
Điều kiện: \(2\le x\le6\)
Bình phương cả 2 vế ta được:
\(x-2+6-x+2\sqrt{\left(x-2\right)\left(6-x\right)}=x^2-8x+24\)
<=> \(4+2\sqrt{-x^2+8x-12}=x^2-8x+24\) (*)
Đặt \(t=\sqrt{-x^2+8x-12}\left(t\ge0\right)\) => \(t^2=-x^2+8x-12=-\left(x^2-8x+24\right)+12\)
Phương trình (*) trở thành: 4 + 2t = 12 - t2
<=> t2 + 2t - 8 = 0
<=> (t +4).(t - 2) = 0 <=> t = 2 hoặc t = -4
t = 2 thỏa mãn
=> -x2 + 8x - 12 = 4
<=> -x2 + 8x - 16 = 0 <=> -(x - 4)2 = 0 <=> x = 4 (thỏa mãn)
Vậy x = 4 là nghiệm của pt
Bài này chắc ko cần liên hợp gì đó nhỉ ạ? Em thử thôi!
ĐK: \(x\le12\)
Đặt \(\sqrt[3]{24+x}=a;\sqrt{12-x}=b\Rightarrow a^3+b^2=36\)
Kết hợp đề bài ta có hệ pt \(\left\{{}\begin{matrix}a+b=6\\a^3+b^2=36=\left(a+b\right)^2\end{matrix}\right.\)
Xét pt thứ hai của hệ \(\Leftrightarrow a^3+b^2-a^2-2ab-b^2=0\)
\(\Leftrightarrow a^3-a^2-2ab=0\Leftrightarrow a\left(a^2-a-2b\right)=0\)
*)Với a = 0 thì x = -24 (TM)
*)Với \(a^2-a-2b=0\Rightarrow a^2-a=2b\)
Pt thứ nhất của hệ tương đương với: 2a + 2b = 12
Thay 2b bởi a2 - a ta được PT thứ nhất của hệ \(\Leftrightarrow a^2+a-12=0\Leftrightarrow\left[{}\begin{matrix}a=3\\a=-4\end{matrix}\right.\)
+)a = 3 suy ra x = 3 (TM)
+)a = -4 suy ra \(x=-88\) (TM) (mấy cái này chị từ giải rõ ra bằng cách thay vô đk rồi lập phương lên thôi nha, em lười viết lắm)
Vậy tập hợp nghiệm của PT: S = {-24;3;-88}