K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
26 tháng 12 2020

ĐKXĐ: \(x\ge-2\)

\(\sqrt{2}\left(x^2+8\right)=5\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x+2}=a\ge0\\\sqrt{x^2-2x+4}=b>0\end{matrix}\right.\)

\(\Rightarrow\sqrt{2}\left(2a^2+b^2\right)=5ab\)

\(\Leftrightarrow4a^2-5\sqrt{2}ab+2b^2=0\)

\(\Leftrightarrow\left(a-\sqrt{2}b\right)\left(4a-\sqrt{2}b\right)=0\)

Đến đây chắc bạn tự giải được

26 tháng 12 2020

ĐKXĐ: x≥−2x≥−2

√2(x2+8)=5√(x+2)(x2−2x+4)2(x2+8)=5(x+2)(x2−2x+4)

Đặt {√x+2=a≥0√x2−2x+4=b>0{x+2=a≥0x2−2x+4=b>0

⇒√2(2a2+b2)=5ab⇒2(2a2+b2)=5ab

⇔4a2−5√2ab+2b2=0⇔4a2−52ab+2b2=0

⇔(a−√2b)(4a−√2b)=0

Giải phương trình : $\sqrt{x^{2}+5}+3x =\sqrt{x^{2}+12}+5$ - posted in Đại ... Giải. Dễ thấy, nếu x < 0: VT=√x2+5+3x<√x2+12<√x2+12+5 V T = x 2 + .... phương trình đã cho tương đương √x2+5+√x2+12=73x−5 x 2 + 5 + x 2 ...

4 tháng 2 2020

\(Đkxđ:\left\{{}\begin{matrix}x\ge-2\\B.phương-2vế-không-âm\end{matrix}\right.\)

\(\Leftrightarrow2\left(x^2+8\right)=25\left(x^3+8\right)\)

\(\Leftrightarrow2x^4-25x^3+31x^2-72=0\)

\(\Leftrightarrow\left(2x^2-5x+6\right)\left(x^2-10x-12\right)=0\)

\(Vì:2x^2-5x+6=2\left(x-\frac{5}{4}\right)^2+\frac{23}{8}>0\)

\(Nếu:x^2-10x-12=0\Leftrightarrow\left(x-5\right)^2=37\Leftrightarrow\left[{}\begin{matrix}x-5=\sqrt{37}\\x-5=-\sqrt{37}\end{matrix}\right.\)

\(\Rightarrow x_1=5+\sqrt{37}\)\(x_2=5-\sqrt{37}\)

Vậy .........

24 tháng 6 2023

\(\left(2-\sqrt{5}\right)x^2+\left(6-\sqrt{5}\right)x-8+2\sqrt{5}=0\)

\(\Leftrightarrow\left(2-\sqrt{5}\right)x^2-\left(2-\sqrt{5}\right)x+\left(8-2\sqrt{5}\right)x-(8-2\sqrt{5})=0\)

\(\Leftrightarrow\left(2-\sqrt{5}\right)x\left(x-1\right)+\left(8-2\sqrt{5}\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[\left(2-\sqrt{5}\right)x+\left(8-2\sqrt{5}\right)\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\\left(2-\sqrt{5}\right)x=-8+2\sqrt{5}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{-8+2\sqrt{5}}{2-\sqrt{5}}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=6+4\sqrt{5}\end{matrix}\right.\)

Vậy \(S=\left\{1;6+4\sqrt{5}\right\}\)

22 tháng 6 2021

Điều kiện:`x>=2`

Ta có:

`sqrt{x+6}-sqrt{x-2}=(x+6-x+2)/(sqrt{x+6}+sqrt{x-2})`

`=8/(\sqrt{x+6}+sqrt{x-2})`

`pt<=>8/(sqrt{x+6}+sqrt{x-2})(1+sqrt{(x-2)(x+6)})=8`

`<=>(1+sqrt{(x-2)(x+6)})/(sqrt{x+6}+sqrt{x-2})=1`

`<=>1+sqrt{(x-2)(x+6)}=sqrt{x+6}+sqrt{x-2}`

`<=>sqrt{(x-2)(x+6)}-sqrt{x+6}=sqrt{x-2}-1`

`<=>sqrt{x+6}(sqrt{x-2}-1)=sqrt{x-2}-1`

`<=>(sqrt{x-2}-1)(sqrt{x+6}-1)=0`

Vì `x>=2=>x+6>=8=>sqrt{x+6}>=2sqrt2`

`=>sqrt{x+6}-1>=2sqrt2-1>0`

`<=>sqrt{x-2}=1`

`<=>x=3(tm)`

Vậy `S={3}`

15 tháng 9 2018

\(\sqrt{x+3}+\sqrt{1-x}=2-8\sqrt{\left(x+3\right)\left(x+1\right)}\)

\(\Leftrightarrow\sqrt{x+3}+\sqrt{1-x}-2+8\sqrt{\left(x+3\right)\left(x+1\right)}=0\)

\(\Leftrightarrow\sqrt{x+3}-\frac{x+3}{\sqrt{1-x}+2}+8\sqrt{\left(x+3\right)\left(x+1\right)}=0\)

\(\Leftrightarrow\sqrt{x+3}\left(1-\frac{\sqrt{x+3}}{\sqrt{1-x}+2}+8\sqrt{x+1}\right)=0\)

\(\Leftrightarrow\sqrt{x+3}=0\)

\(\Leftrightarrow x=-3\)