\(\sqrt{2\left(4x^4+1\right)}=6x^2-10x+3\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
17 tháng 5 2019

Bình phương 2 vế:

\(\Rightarrow28x^4-120x^3+136x^2-60x+7=0\)

Nhận thấy \(x=0\) không phải nghiệm, chia 2 vế cho \(x^2\)

\(\Leftrightarrow28x^2-120x+136-\frac{60}{x}+\frac{7}{x^2}=0\)

\(\Leftrightarrow7\left(4x^2+\frac{1}{x^2}\right)-60\left(2x+\frac{1}{x}\right)+136=0\)

Đặt \(2x+\frac{1}{x}=a\Rightarrow a^2-4=4x^2+\frac{1}{x^2}\)

\(\Rightarrow7\left(a^2-4\right)-60a+136=0\)

\(\Leftrightarrow7a^2-60a+108=0\) \(\Rightarrow\left[{}\begin{matrix}a=6\\a=\frac{18}{7}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x+\frac{1}{x}=6\\2x+\frac{1}{x}=\frac{18}{7}\end{matrix}\right.\) \(\Rightarrow...\)

Do ban đầu bình phương ko điều kiện nên nhớ thử nghiệm vào vế phải của pt ban đầu coi có dương ko, âm thì cần loại nghiệm.

23 tháng 11 2022

a: =>(x^2+4x-5)(x^2+4x-21)=297

=>(x^2+4x)^2-26(x^2+4x)+105-297=0

=>x^2+4x=32 hoặc x^2+4x=-6(loại)

=>x^2+4x-32=0

=>(x+8)(x-4)=0

=>x=4 hoặc x=-8

b: =>(x^2-x-3)(x^2+x-4)=0

hay \(x\in\left\{\dfrac{1+\sqrt{13}}{2};\dfrac{1-\sqrt{13}}{2};\dfrac{-1+\sqrt{17}}{2};\dfrac{-1-\sqrt{17}}{2}\right\}\)

c: =>(x-1)(x+2)(x^2-6x-2)=0

hay \(x\in\left\{1;-2;3+\sqrt{11};3-\sqrt{11}\right\}\)

17 tháng 5 2019

\(ĐK:x\le\frac{5-\sqrt{7}}{6},\frac{5+\sqrt{7}}{6}\le x\)

Ta có: \(8x^4+2=36x^4+9+100x^2+36x^2-60x-120x^3\)

    <=> \(28x^4-120x^3+136x^2-60x+7=0\)

    <=> \(\left(2x^2-6x+1\right)\left(14x^2-18x+7\right)=0\)

    <=> \(\orbr{\begin{cases}2x^2-6x+1=0\\14x^2-18x+7=0\end{cases}}\)

    \(TH_1:2x^2-6x+1=0\)

       <=> \(\orbr{\begin{cases}x=\frac{3+\sqrt{7}}{2}\left(n\right)\\x=\frac{3-\sqrt{7}}{2}\left(n\right)\end{cases}}\)

    \(TH_2:14x^2-18x+7=0\)

       <=> \(x\in\Phi\)( Tự c/m)

               Vậy \(S=\left\{\frac{3\pm\sqrt{7}}{2}\right\}\)

3 tháng 10 2019

https://www.symbolab.com/

27 tháng 10 2019

Đặt \(t=6x+1\)và \(h=\sqrt{x^2+3}\)

\(\frac{1}{4}\cdot t^2+h^2-\frac{9}{4}=th\)

\(\Leftrightarrow\left(t-2h\right)^2=9\)

\(\Leftrightarrow t-2h=\pm3\)

Với \(t-2h=3\)ta có

\(6x+1-2\sqrt{x^2+3}=3\)

\(\Leftrightarrow3x-1=\sqrt{x^2+3}\)

\(\Leftrightarrow\hept{\begin{cases}3x-1\ge0\\x^2+3=\left(3x+2\right)^2\end{cases}\Leftrightarrow x=\frac{\sqrt{7}-3}{4}}\)

Vậy pt có nghiệm là \(x=1;x=\frac{\sqrt{7}-3}{4}\)

Bài 1: Giải phương trình

a) ĐKXĐ: \(x\ge3\)

Ta có: \(\sqrt{100\cdot\left(x-3\right)}=\sqrt{20}\)

\(\Leftrightarrow\left|100\cdot\left(x-3\right)\right|=\left|20\right|\)

\(\Leftrightarrow100\cdot\left|x-3\right|=20\)

\(\Leftrightarrow\left|x-3\right|=\frac{1}{5}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=\frac{1}{5}\\x-3=-\frac{1}{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{16}{5}\left(nhận\right)\\x=\frac{14}{5}\left(loại\right)\end{matrix}\right.\)

Vậy: \(S=\left\{\frac{16}{5}\right\}\)

b) Ta có: \(\sqrt{\left(x-3\right)^2}=7\)

\(\Leftrightarrow\left|x-3\right|=7\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=7\\x-3=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=10\\x=-4\end{matrix}\right.\)

Vậy: S={10;-4}

c) Ta có: \(\sqrt{4x^2+4x+1}=6\)

\(\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\)

\(\Leftrightarrow\left|2x+1\right|=6\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=5\\2x=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{5}{2}\\x=\frac{-7}{2}\end{matrix}\right.\)

Vậy: \(S=\left\{\frac{5}{2};\frac{-7}{2}\right\}\)

NV
13 tháng 4 2019

a/

ĐKXĐ: \(x\ge\frac{5}{3}\)

\(\sqrt{10x+1}-\sqrt{9x+4}+\sqrt{3x-5}-\sqrt{2x-2}=0\)

\(\Leftrightarrow\frac{x-3}{\sqrt{10x+1}+\sqrt{9x+4}}+\frac{x-3}{\sqrt{3x-5}+\sqrt{2x-2}}=0\)

\(\Leftrightarrow\left(x-3\right)\left(\frac{1}{\sqrt{10x+1}+\sqrt{9x+4}}+\frac{1}{\sqrt{3x-5}+\sqrt{2x-2}}\right)=0\)

\(\Leftrightarrow x-3=0\) (ngoặc phía sau luôn dương)

\(\Rightarrow x=3\)

b/ \(\left\{{}\begin{matrix}2x-y\ge1\\x+2y\ge0\end{matrix}\right.\) (1)

Biến đổi pt dưới:

\(\left(2\left(x+2y\right)-1\right)\sqrt{2x-y-1}=\left(2\left(2x-y-1\right)-1\right)\sqrt{x+2y}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x+2y}=a\ge0\\\sqrt{2x-y-1}=b\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left(2a^2-1\right)b=\left(2b^2-1\right)a\)

\(\Leftrightarrow2a^2b-2ab^2+a-b=0\)

\(\Leftrightarrow2ab\left(a-b\right)+a-b=0\)

\(\Leftrightarrow\left(a-b\right)\left(2ab+1\right)=0\)

\(\Rightarrow a=b\) (do \(\left\{{}\begin{matrix}a\ge0\\b\ge0\end{matrix}\right.\) \(\Rightarrow2ab+1>0\))

\(\Rightarrow\sqrt{x+2y}=\sqrt{2x-y-1}\Leftrightarrow x+2y=2x-y-1\)

\(\Leftrightarrow x=3y+1\)

Thế vào pt trên:

\(\left(3y+1\right)^2-5y^2-8y-3=0\)

\(\Leftrightarrow4y^2-2y-2=0\) \(\Rightarrow\left[{}\begin{matrix}y=1\Rightarrow x=4\\y=-\frac{1}{2}\Rightarrow x=-\frac{1}{2}\end{matrix}\right.\)

Thế nghiệm vào hệ điều kiện (1) thì chỉ có \(\left(x;y\right)=\left(4;1\right)\) thỏa mãn

11 tháng 4 2019

Câu a) Cứ bình phương và bình phương cho hết căn rồi bấm máy tính giải ra :v

b)pt\(\left(2\right)\)\(\Leftrightarrow\left(2x+4y-1\right)^2\left(2x-y-1\right)=\left(4x-2y-3\right)^2\left(x+2y\right)\)

\(\Leftrightarrow\left(x-3y-1\right)\left(8x^2-8y^2-4x-8y+12xy-1\right)=0\)

Đến đây tự giải thế vào (1)

Nguyễn Việt Lâm Giải giúp t TH2 nha!

14 tháng 3 2018

Đk : x >= -70

Đặt : \(\sqrt{x+70}=a\);  \(\sqrt{2x^2+4x+16}=b\)

=> 6x^2+10x-92 = 3b^2 - 2a^2

pt trở thành :

3b^2 - 2a^2 + ab = 0

<=> (3b^2+3ab)-(2ab+2a^2) = 0

<=> (a+b).(3b-2a) = 0

<=> a+b=0 hoặc 3b-2a = 0

<=> a=-b hoặc 2a=3b

Đến đó bạn tự thay vào mà làm nha

Tk mk nha