\(\sqrt{2-\frac{1}{\sqrt{2-x}}}=x\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2016

Điều kiện xác định : \(\hept{\begin{cases}2\ge\frac{1}{\sqrt{2-x}}\\x< 2\\x\ge0\end{cases}}\) \(\Leftrightarrow0\le x\le\frac{7}{4}\)

Ta có : \(\sqrt{2-\frac{1}{\sqrt{2-x}}}=x\)

\(\Rightarrow2-\frac{1}{\sqrt{2-x}}=x^2\)

\(\Leftrightarrow x^2\sqrt{2-x}-2\sqrt{2-x}+1=0\)

Đặt \(t=\sqrt{2-x},t\ge0\Rightarrow x=2-t^2\)

Ta có : \(\left(2-t^2\right)^2.t-2t+1=0\)

\(\Leftrightarrow t\left[\left(2-t^2\right)^2-1\right]-\left(t-1\right)=0\)

\(\Leftrightarrow t\left(2-t^2-1\right)\left(2-t^2+1\right)-\left(t-1\right)=0\)

\(\Leftrightarrow t\left(t-1\right)\left(t+1\right)\left(t^2-3\right)-\left(t-1\right)=0\)

\(\Leftrightarrow\left(t-1\right)\left[t\left(t+1\right)\left(t^2-3\right)-1\right]=0\)

\(\Leftrightarrow\orbr{\begin{cases}t-1=0\\t\left(t+1\right)\left(t^2-3\right)-1=0\end{cases}}\)

  • Nếu t - 1 = 0 => t = 1 ta có  \(x=2-1^2=1\)(tmđk)
  • Nếu \(t\left(t+1\right)\left(t^2-3\right)-1=0\) , từ điều kiện \(0\le x\le\frac{7}{4}\)ta có \(t\left(t+1\right)\left(t^2-3\right)-1\le-\frac{179}{256}< 0\)=> pt này vô nghiệm.

Vậy pt có nghiệm x = 1

13 tháng 8 2016

toán mấy ạ

17 tháng 9 2019

a/ Dặt \(\sqrt{x+1}=a\ge0\)

\(\Rightarrow4\sqrt{x+1}=x^2+5x+4\)

\(\Leftrightarrow4\sqrt{x+1}=\left(x+1\right)^2+3\left(x+1\right)\)

\(\Leftrightarrow4a=a^4+3a^2\)

\(\Leftrightarrow a\left(a-1\right)\left(a^2+a+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=0\\a=1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x+1}=0\\\sqrt{x+1}=1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=0\end{cases}}\)

17 tháng 9 2019

b/ Đặt \(\hept{\begin{cases}\sqrt{4x+1}=a\ge0\\\sqrt{3x-2}=b\ge0\end{cases}}\)

\(\Rightarrow a^2-b^2=x+3\)

Từ đây ta có:

\(a-b=\frac{a^2-b^2}{5}\)

\(\Leftrightarrow\left(a-b\right)\left(5-a-b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=b\left(1\right)\\a+b=5\left(2\right)\end{cases}}\)

Thế vô làm tiếp

11 tháng 9 2020

\(\Leftrightarrow x+y+z=2\sqrt{x-2}+2\sqrt{y+2003}+2\sqrt{z-2004}\)

\(\Leftrightarrow\left(x-2-2\sqrt{x-2}+1\right)+\left(y+2003-2\sqrt{y+2003}+1\right)\)

\(+\left(z-2004-2\sqrt{z-2004}+1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y+2003}-1\right)^2+\left(\sqrt{z-2004}-1\right)^2=0\)

Vì biểu thức trên là tổng của các số hạng không âm nên nó bằng 0 khi và chỉ khi các số hạng phải bằng 0

\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-2}=1\\\sqrt{y-2003}=1\\\sqrt{z-2004}=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=2004\\z=2005\end{cases}}}\)

11 tháng 9 2020

\(ĐK:x\ge2,y\ge-2003,z\ge2004\)

Pt đã cho tương đương :

\(x+y+z-2\sqrt{x-2}-2\sqrt{y+2003}-2\sqrt{z-2004}=0\)

\(\Leftrightarrow\left(x-2-2\sqrt{x-2}+1\right)+\left(y+2003-2\sqrt{y+2003}+1\right)+\left(z-2004-2\sqrt{z-2004}+1\right)\)\(=0\)

\(\Leftrightarrow\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y+2003}-1\right)^2+\left(\sqrt{z-2004}-1\right)^2=0\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-2=1\\y+2003=1\\z-2004=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=-2002\\z=2005\end{cases}}\)(Thỏa mãn)

1 tháng 10 2016

\(A=\sqrt{4x+1}-\sqrt{3x-2}=\frac{x+3}{2}\)

đkxđ \(\hept{\begin{cases}x\ge-\frac{1}{4}\\x\ge\frac{2}{3}\end{cases}}\)

đặt t=x+3 phương trình trở thành 

\(A=\sqrt{4\left[x+3\right]-11}-\sqrt{3\left[x+3\right]-11}=\frac{x+3}{2}\)

\(A=\sqrt{4t-11}-\sqrt{3t-11}=\frac{t}{2}\)

\(\Leftrightarrow4t-11=\frac{t^2}{4}+3t-11+t\sqrt{3t-11}\)

\(\Leftrightarrow t^2-\frac{t^2}{4}=t\sqrt{3t-11}\)

\(\Leftrightarrow\frac{t\left[4-t\right]}{4}=t\sqrt{3t-11}\)

\(\Leftrightarrow\frac{\left[4-t\right]^2}{16}=3t-11\)

\(\Leftrightarrow t^2-56t+192=0\)

\(\Leftrightarrow\orbr{\begin{cases}t=28+4\sqrt{37}\\t=28-4\sqrt{37}\end{cases}}\)

thế vào x+3=t suy ra 

\(\orbr{\begin{cases}x=25+4\sqrt{37}\left[loại\right]\\x=25-4\sqrt{37}\left[nhận\right]\end{cases}}\)

\(S=\left\{25-4\sqrt{37}\right\}\)

NV
5 tháng 11 2019

a/ ĐKXĐ: \(x\ge1\)

\(\sqrt{x-1}=\sqrt{5x-1}+\sqrt{3x-2}\)

\(\Leftrightarrow x-1=8x-3+2\sqrt{\left(5x-1\right)\left(3x-2\right)}\)

\(\Leftrightarrow2-7x=2\sqrt{\left(5x-1\right)\left(3x-2\right)}\)

Do \(x\ge1\Rightarrow2-7x< 0\Rightarrow\left\{{}\begin{matrix}VP\ge0\\VT< 0\end{matrix}\right.\)

Phương trình vô nghiệm

b/ ĐKXĐ: \(x\ge1\)

\(\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}+1}=2\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}=2\)

\(\Leftrightarrow\left|\sqrt{x-1}+1\right|+\left|1-\sqrt{x-1}\right|=2\)

\(\left|\sqrt{x-1}+1\right|+\left|1-\sqrt{x-1}\right|\ge\left|\sqrt{x-1}+1+1-\sqrt{x-1}\right|=2\)

Dấu "=" xảy ra khi và chỉ khi \(1-\sqrt{x-1}\ge0\Rightarrow x\le2\Rightarrow1\le x\le2\)

Vậy nghiệm của pt là \(1\le x\le2\)

15 tháng 5 2018

a) \(\sqrt{x+3}-\sqrt{x-1}=\sqrt{2x+2}\)

Điều kiện: \(\hept{\begin{cases}x+3\ge0\\x-1\ge0\\2x+2\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge-3\\x\ge1\\x\ge-1\end{cases}\Leftrightarrow x\ge1}\)

    \(\Leftrightarrow\left(\sqrt{x+3}-\sqrt{x-1}\right)^2=\left(\sqrt{2x+2}\right)^2\)

     \(\Leftrightarrow x+3-2\sqrt{\left(x+3\right)\left(x-1\right)}+x-1=2x+2\)

     \(\Leftrightarrow2x+2-2\sqrt{\left(x+3\right)\left(x-1\right)}=2x+2\)

     \(\Leftrightarrow-2\sqrt{\left(x+3\right)\left(x-1\right)}=0\)

     \(\Leftrightarrow\left(x+3\right)\left(x-1\right)=0\)

      \(\Leftrightarrow\orbr{\begin{cases}x+3=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-3\left(l\right)\\x=1\left(n\right)\end{cases}}\)

Vậy \(S=\left\{1\right\}\)