Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có pt
<=> \(2\left(2x+1\right)\sqrt{x+8}=4x^2+4x+1+x+8-x^2+2x-1\)
\(\Leftrightarrow2\left(2x+1\right)\sqrt{x+8}=\left(2x+1\right)^2+x+8-\left(x-1\right)^2\)
\(\Leftrightarrow\left(2x+1\right)^2-2\left(2x+1\right)\sqrt{x+8}+x+8-\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(2x+1-\sqrt{x+8}\right)^2-\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(2x+1-\sqrt{x+8}+x-1\right)\left(2x+1-\sqrt{x+8}-x+1\right)=0\)
\(\Leftrightarrow\left(3x-\sqrt{x+8}\right)\left(x+2-\sqrt{x+8}\right)=0\)
đến đây thì dễ rồi nhé
Giải phương trình sau:
√3x2−5x+1−√x2−2=√3(x2−x−1)−√x2−3x+4
ĐKXD: \(3x^2-7x+5\ge0;x^2-x+4\ge0;3x^2-5x+1\ge0\)
Phương trình tương đương
\(\sqrt{3x^2-7x+5}-\sqrt{3x^2-5x+1}=\sqrt{x^2-2}-\sqrt{x^2-x+4}\)
\(\left(=\right)\frac{-2\left(x-2\right)}{\sqrt{3x^2-7x+5}+\sqrt{3x^2-5x+1}}=\frac{x-2}{\sqrt{x^2+2}+\sqrt{x^2-x+4}}\)
\(\left(=\right)\left(x-2\right)\left(\frac{-2}{\sqrt{3x^2-7x+5}+\sqrt{3x^2-5x+1}}-\frac{1}{\sqrt{x^2+2}+\sqrt{x^2-x+4}}\right)=0\)
Dễ đàng đánh giá Trường hợp còn lại nhỏ hơn 0. Từ đó suy ra x=2(thỏa)
ĐKXĐ:...
\(\sqrt{3x^2-5x-1}-\sqrt{3x^2-7x+9}+\sqrt{x^2-2}-\sqrt{x^2-3x+13}=0\)
\(\Leftrightarrow\frac{2\left(x-5\right)}{\sqrt{3x^2-5x-1}+\sqrt{3x^2-7x+9}}+\frac{3\left(x-5\right)}{\sqrt{x^2-2}+\sqrt{x^2-3x+13}}=0\)
\(\Leftrightarrow\left(x-5\right)\left(\frac{2}{\sqrt{3x^2-5x-1}+\sqrt{3x^2-7x+9}}+\frac{3}{\sqrt{x^2-2}+\sqrt{x^2-3x+13}}\right)=0\)
\(\Leftrightarrow x-5=0\) (ngoặc to phía sau luôn dương)
\(\Rightarrow x=5\)
Lời giải:
ĐKXĐ: \(x\leq \frac{2}{3}\)
Ta có: \(\sqrt{2-3x}=-3x^2+7x-1\)
\(\Leftrightarrow 3x^2-7x+1+\sqrt{2-3x}=0\)
\(\Leftrightarrow x(3x-1)-2(3x-1)+\sqrt{2-3x}-1=0\)
\(\Leftrightarrow x(3x-1)-2(3x-1)+\frac{2-3x-1}{\sqrt{2-3x}+1}=0\)
\(\Leftrightarrow (3x-1)\left(x-2-\frac{1}{\sqrt{2-3x}+1}\right)=0\)
Vì \(x\leq \frac{2}{3}; \frac{1}{\sqrt{2-3x}+1}>0\Rightarrow x-2-\frac{1}{\sqrt{2-3x}+1}< \frac{2}{3}-2-0<0\)
Tức là \(x-2-\frac{1}{\sqrt{2-3x}+1}\neq 0\Rightarrow 3x-1=0\Rightarrow x=\frac{1}{3}\) (t/m)
Vậy...........