Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{x-29}{1970}+\frac{x-27}{1972}+\frac{x-25}{1974}+\frac{x-23}{1976}+\frac{x-21}{1978}+\frac{x-19}{1980}\)\(=\frac{x-1970}{29}+\frac{x-1972}{27}+\frac{x-1974}{25}+\frac{x-1976}{23}+\frac{x-1978}{21}+\frac{x-1980}{19}\)
\(\Leftrightarrow\left(\frac{x-29}{1970}-1\right)+\left(\frac{x-27}{1972}-1\right)+\left(\frac{x-25}{1974}-1\right)+\left(\frac{x-23}{1976}-1\right)+\left(\frac{x-21}{1978}-1\right)+\left(\frac{x-19}{1980}-1\right)\)\(=\left(\frac{x-1970}{29}-1\right)+\left(\frac{x-1972}{27}-1\right)+\left(\frac{x-1974}{25}-1\right)+\left(\frac{x-1976}{23}-1\right)+\left(\frac{x-1978}{21}-1\right)+\left(\frac{x-1980}{19}-1\right)\)
\(\Leftrightarrow\frac{x-1999}{1970}+\frac{x-1999}{1972}+\frac{x-1999}{1974}+\frac{x-1999}{1976}+\frac{x-1999}{1978}+\frac{x-1999}{1980}\)\(=\frac{x-1999}{29}+\frac{x-1999}{27}+\frac{x-1999}{25}+\frac{x-1999}{24}+\frac{x-1999}{21}+\frac{x-1999}{19}\)
\(\Leftrightarrow\left(x-1999\right)\left(\frac{1}{1970}+\frac{1}{1972}+\frac{1}{1974}+\frac{1}{1976}+\frac{1}{1978}+\frac{1}{1980}\right)\)\(=\left(x-1999\right)\left(\frac{1}{29}+\frac{1}{27}+\frac{1}{25}+\frac{1}{23}+\frac{1}{21}+\frac{1}{19}\right)\)
\(\Leftrightarrow\left(x-1999\right)\left(\frac{1}{1970}+\frac{1}{1972}+\frac{1}{1974}+\frac{1}{1976}+\frac{1}{1978}+\frac{1}{1980}-\frac{1}{29}-\frac{1}{27}-\frac{1}{25}-\frac{1}{23}-\frac{1}{21}-\frac{1}{19}\right)=0\)\(\Leftrightarrow\) \(x-1999=0\) (Vì ...khác 0)
\(\Leftrightarrow x=1999\)(thỏa mãn)
Vậy \(x=1999\)
148-x/25-1 + 169-x/23-2 + 186-x/21-3 + 199-x/19-4
123-x/25 + 123-x/23 + 123-x/21 + 123-x/19 =0
123-x=0 => x=123
\(\frac{148-x}{25}+\frac{169-x}{23}+\frac{186-x}{21}+\frac{199-x}{19}=10\)
\(\left(\frac{148-x}{25}-1\right)+\left(\frac{169-x}{23}-2\right)+\left(\frac{186-x}{21}-3\right)+\left(\frac{199-x}{19}-4\right)=0\)
=> \(\frac{123-x}{25}+\frac{123-x}{23}+\frac{123-x}{21}+\frac{123-x}{19}=0\)
=> \(\left(123-x\right)\left(\frac{1}{25}+\frac{1}{23}+\frac{1}{21}+\frac{1}{19}\right)=0\)
=> 123 - x = 0
=> x = 123
\(\frac{29-x}{21}+\frac{27-x}{23}+\frac{25-x}{25}+\frac{23-x}{27}=-4\\\)
\(\Leftrightarrow\frac{29-x}{21}+1+\frac{27-x}{23}+1+\frac{25-x}{25}+1+\frac{23-x}{27}+1=0\)
\(\Leftrightarrow\frac{50-x}{21}+\frac{50-x}{23}+\frac{50-x}{25}+\frac{50-x}{27}=0\\\)
\(\Leftrightarrow\left(50-x\right)\left(\frac{1}{21}+\frac{1}{23}+\frac{1}{25}+\frac{1}{27}\right)=0\)
Vì\(\frac{1}{21}+\frac{1}{23}+\frac{1}{25}+\frac{1}{27}\ne0\)
\(\Rightarrow50-x=0\)
\(\Leftrightarrow x=50\)
29-x/21 + 27-x/23 + 25-x/25 + 23-x/27 = -4
<=> (29-x/21 + 1) + (27-x/23 + 1) + (25-x/25 + 1) + (23-x/27 + 1) = -4 + 4
<=> 50-x/21 + 50-x/23 + 50-x/25 + 50-x/27 = 0
<=> (50-x)(1/21 + 1/23 + 1/25 + 1/27) = 0
Mà 1/21 + 1/23 + 1/25 + 1/27 > 0
Nên 50-x=0 <=> x=50
Vậy ...
a) \(\dfrac{x-5}{100}+\dfrac{x-4}{101}+\dfrac{x-3}{102}=\dfrac{x-100}{5}+\dfrac{x-101}{4}+\dfrac{x-102}{3}\)
\(\Leftrightarrow\dfrac{x-5}{100}-1+\dfrac{x-4}{101}-1+\dfrac{x-3}{102}-1=\dfrac{x-100}{5}-1+\dfrac{x-101}{4}-1+\dfrac{x-102}{3}-1\)
\(\Leftrightarrow\dfrac{x-105}{100}+\dfrac{x-105}{101}+\dfrac{x-105}{102}-\dfrac{x-105}{5}-\dfrac{x-105}{4}-\dfrac{x-105}{3}=0\)
\(\Leftrightarrow\left(x-105\right)\left(\dfrac{1}{100}+\dfrac{1}{101}+\dfrac{1}{102}-\dfrac{1}{5}-\dfrac{1}{4}-\dfrac{1}{3}\right)=0\)
\(\Leftrightarrow\left(x-105\right)=0;\left(\dfrac{1}{100}+\dfrac{1}{101}+\dfrac{1}{102}-\dfrac{1}{5}-\dfrac{1}{4}-\dfrac{1}{3}\right)\ne0\)
\(\Leftrightarrow x=105\)
b) \(\dfrac{29-x}{21}+\dfrac{27-x}{23}+\dfrac{25-x}{25}+\dfrac{23-x}{27}+\dfrac{21-x}{29}=-5\)
\(\Leftrightarrow\dfrac{29-x}{21}+1+\dfrac{27-x}{23}+1+\dfrac{25-x}{25}+1+\dfrac{23-x}{27}+1+\dfrac{21-x}{29}+1=0\)
\(\Leftrightarrow\dfrac{50-x}{21}+\dfrac{50-x}{23}+\dfrac{50-x}{25}+\dfrac{50-x}{27}+\dfrac{50-x}{29}=0\)
\(\Leftrightarrow\left(50-x\right)\left(\dfrac{1}{29}+\dfrac{1}{27}+\dfrac{1}{25}+\dfrac{1}{23}+\dfrac{1}{21}\right)=0\)
\(\Leftrightarrow50-x=0;\left(\dfrac{1}{29}+\dfrac{1}{27}+\dfrac{1}{25}+\dfrac{1}{23}+\dfrac{1}{21}\right)\ne0\)
\(\Leftrightarrow x=50\)
\(\dfrac{x-241}{17}+\dfrac{x-220}{19}+\dfrac{x-195}{21}+\dfrac{x-166}{23}=10\)
<=>\(\dfrac{x-241}{17}-1+\dfrac{x-220}{19}-2+\dfrac{x-195}{21}-3+\dfrac{x-166}{23}-4=0\)
<=>\(\dfrac{x-258}{17}+\dfrac{x-258}{19}+\dfrac{x-258}{21}+\dfrac{x-258}{23}=0\)
<=>\(\left(x-258\right)\left(\dfrac{1}{17}+\dfrac{1}{19}+\dfrac{1}{21}+\dfrac{1}{23}\right)=0\)
vì 1/17+1/19+1/21+1/23 khác 0
=>x-258=0<=>x=258
vậy..........
Nhập phép tính vào máy tính
Sau đó bấm shift - solve sexra kết quả 258
\(\dfrac{x-241}{17}+\dfrac{x-220}{19}+\dfrac{x-195}{21}+\dfrac{x-166}{23}=10\)
\(\Leftrightarrow\dfrac{x-241}{17}+\dfrac{x-220}{19}+\dfrac{x-195}{21}+\dfrac{x-166}{23}-10=0\)
\(\Leftrightarrow(\dfrac{x-241}{17}-1)+(\dfrac{x-220}{19}-2)+(\dfrac{x-195}{21}-3)+(\dfrac{x-166}{23}-4)=0\)
\(\Leftrightarrow\dfrac{x-258}{17}+\dfrac{x-258}{19}+\dfrac{x-258}{21}+\dfrac{x-258}{23}=0\)
\(\Leftrightarrow\left(x-258\right)\left(\dfrac{1}{17}+\dfrac{1}{19}+\dfrac{1}{21}+\dfrac{1}{23}\right)=0\)
\(Do\) \(\left(\dfrac{1}{17}+\dfrac{1}{19}+\dfrac{1}{21}+\dfrac{1}{23}\right)\ne0\) \(nên\) \(để\) \(gt=0\)
\(\Leftrightarrow x-258=0\)
\(\Leftrightarrow x=258\)
\(Vậy...\)
Giải Phương Trình Sau:
\(\dfrac{x-342}{15}+\dfrac{x-323}{17}+\dfrac{x-300}{19}+\dfrac{x-273}{21}=10\)
Lời giải:
PT $\Leftrightarrow \frac{x-342}{15}-1+\frac{x-323}{17}-2+\frac{x-300}{19}-3+\frac{x-273}{21}-4=0$
$\Leftrightarrow \frac{x-357}{15}+\frac{x-357}{17}+\frac{x-357}{19}+\frac{x-357}{21}=0$
$(x-357)\left(\frac{1}{15}+\frac{1}{17}+\frac{1}{19}+\frac{1}{21}\right)=0$
Dễ thấy: $\frac{1}{15}+\frac{1}{17}+\frac{1}{19}+\frac{1}{21}\neq 0$
$\Rightarrow x-357=0$
$\Rightarrow x=357$
1)
\(\dfrac{x-5}{100}+\dfrac{x-4}{101}+\dfrac{x-3}{102}=\dfrac{x-100}{5}+\dfrac{x-101}{4}+\dfrac{x-102}{3}\)
\(\Leftrightarrow\dfrac{x-5}{100}+1+\dfrac{x-4}{101}+1+\dfrac{x-3}{102}+1=\dfrac{x-100}{5}+1+\dfrac{x-101}{4}+1+\dfrac{x-102}{3}+1\)
\(\Leftrightarrow\dfrac{x-105}{100}+\dfrac{x-105}{101}+\dfrac{x-105}{102}=\dfrac{x-105}{5}+\dfrac{x-105}{4}+\dfrac{x-105}{3}+\dfrac{x-105}{2}\)
\(\Leftrightarrow\dfrac{x-105}{100}+\dfrac{x-105}{101}+\dfrac{x-105}{102}-\dfrac{x-105}{5}-\dfrac{x-105}{4}-\dfrac{x-105}{3}-\dfrac{x-105}{2}=0\)
\(\Leftrightarrow\left(x-105\right)\left(\dfrac{1}{100}+\dfrac{1}{101}+\dfrac{1}{102}-\dfrac{1}{5}-\dfrac{1}{4}-\dfrac{1}{3}-\dfrac{1}{2}\right)=0\)\(\Leftrightarrow105-x=0\)
\(\Leftrightarrow x=105\)
b)
\(\dfrac{29-x}{21}+\dfrac{27-x}{23}+\dfrac{25-x}{25}+\dfrac{23-x}{27}+\dfrac{21-x}{29}=0\)
\(\Leftrightarrow\dfrac{29-x}{21}+1+\dfrac{27-x}{23}+1+\dfrac{25-x}{25}+1+\dfrac{23-x}{27}+1+\dfrac{21-x}{29}+1=0\)
\(\Leftrightarrow\dfrac{50-x}{21}+\dfrac{50-x}{23}+\dfrac{50-x}{25}+\dfrac{20-x}{27}+\dfrac{50-x}{29}=0\)
\(\Leftrightarrow\left(50-x\right)\left(\dfrac{1}{21}+\dfrac{1}{23}+\dfrac{1}{25}+\dfrac{1}{27}+\dfrac{1}{29}\right)=0\)
\(\Leftrightarrow50-x=0\)
\(\Leftrightarrow x=50\)
2)
\(\left(5x+1\right)^2=\left(3x-2\right)^2\)
\(\Leftrightarrow\left|5x+1\right|=\left|3x-2\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}5x+1=3x-2\\5x+1=-3x+2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-3}{2}\\x=\dfrac{1}{8}\end{matrix}\right.\)
b) \(\left(x+2\right)^3=\left(2x+1\right)^3\)
\(\Leftrightarrow x^3+6x^2+12x+8=8x^3+12x^2+6x+1\)
\(\Leftrightarrow-7x^3-6x^2+6x+7=0\)
\(\Leftrightarrow-7x^3+7x^2-13x^2+13x-7x+7=0\)
\(\Leftrightarrow-7x^2\left(x-1\right)-13x\left(x-1\right)-7\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(-7x^2-13x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\-7x^2-13x-7=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\-7\left(x^2+\dfrac{13}{7}x+1\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\-7\left(x+\dfrac{13}{14}\right)^2-\dfrac{169}{196}=0\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow x=1\)
a, \(\Leftrightarrow3x^2-3+5=3x^2+2x-3x-2\)
\(\Leftrightarrow3x^2-3x-2x+3x=-2+3-5\)
<=>x=-4
b, \(\Leftrightarrow\dfrac{x+4}{5}-\dfrac{5x}{5}+\dfrac{20}{5}=\dfrac{2x}{6}-\dfrac{3\left(x-2\right)}{6}\)
\(\Leftrightarrow\dfrac{x+4-5x+20}{5}=\dfrac{2x-3x+6}{6}\)
\(\Leftrightarrow\dfrac{6\left(-4x+24\right)}{30}=\dfrac{5\left(-x+6\right)}{30}\)
<=>-24x+144=-5x+30
<=>-5x+24x=144-30
<=>19x=114
<=>x=6
\(\Leftrightarrow\dfrac{2032-x}{25}-1+\dfrac{2053-x}{23}-2+\dfrac{2070-x}{21}-3+\dfrac{2083-x}{19}-4=0\)
=>2007-x=0
hay x=2007
\(\dfrac{2032-x}{25}+\dfrac{2053-x}{23}+\dfrac{2070-x}{21}+\dfrac{2083-x}{19}=10\)
\(\Leftrightarrow\left(\dfrac{2032-x}{25}-1\right)+\left(\dfrac{2053-x}{23}-2\right)+\left(\dfrac{2070-x}{21}-3\right)+\left(\dfrac{2083-x}{19}-4\right)=0\)
\(\Leftrightarrow\dfrac{2032-x-25}{25}+\dfrac{2053-x-46}{23}+\dfrac{2070-x-63}{21}+\dfrac{2083-x-76}{19}=0\)
\(\Leftrightarrow\dfrac{2007-x}{25}+\dfrac{2007-x}{23}+\dfrac{2007-x}{21}+\dfrac{2007-x}{19}=0\)
\(\Leftrightarrow\left(2007-x\right)\left(\dfrac{1}{25}+\dfrac{1}{23}+\dfrac{1}{21}+\dfrac{1}{19}\right)=0\)
\(\Leftrightarrow2007-x=0\left(vì.\dfrac{1}{25}+\dfrac{1}{23}+\dfrac{1}{21}+\dfrac{1}{19}\ne0\right)\)
\(\Leftrightarrow x=2007\)