Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 5x2 -8x +3 -0
=> 5x2 -5x -3x +3 =0
=>5x(x-1) -3(x-1) =0
=> (x-1)(5x -3) =0
=>x-1=0 hoặc 5x-3=0
+ nếu x-1=0 thì x =1
+nếu 5x-3=0 thì 5x=3=>x=3/5
b)x3 -7x +6 =0
=>x3 -x-6x+6 =0
=>x(x2 -1)-6(x-1) =0
=>x(x-1)(x+1) -6(x-1) =0
=>(x-1)[x(x+1)-6]=0
=>x-1=0 hoặc x(x+1)-6 =0
+ nếu x -1=0 thì x=1
+nếu x(x+1)-6 =0 thì x(x+1) =6 => x=2
a.5x2 -8x + 3=0
<=>5x2 -5x -3x +3=0
<=>(5x2-5x)(3x-3)=0
<=>5x(x-1) - 3(x-1)=0
<=>(x-1)(5x-3)=0
<=>\(\orbr{\begin{cases}x-1=0\\5x-3=0\end{cases}}\)
<=>\(\orbr{\begin{cases}x=1\\x=\frac{3}{5}\end{cases}}\)
b)x3-7x+6=0
<=>x3-x-6x+6=0
<=>(x3-x)-(6x-6)=0
<=>x(x2-1)-6(x-1)=0
<=>x(x+1)(x-1)-6(x-1)=0
<=>(x-1)[x(x+1)-6]=0
<=>\(\orbr{\begin{cases}x-1=0\\x\left(x+1\right)-6=0\end{cases}}\)
<=>\(\orbr{\begin{cases}x=1\\x=\frac{-1}{2}\end{cases}}\)
a) \(x^3-7x+6=x^3+3x^2-x^2-3x-2x^2-6x+2x+6\)
=\(x^2\left(x+3\right)-x\left(x+3\right)-2x\left(x+3\right)+2\left(x+3\right)\)
=\(\left(x+3\right)\left(x^2-x-2x+2\right)\)
=\(\left(x+3\right)\left(x-2\right)\left(x-1\right)\)
=\(\left\{\begin{matrix}x+3=0=>x=-3\\x-2=0=x=2\\x-1=0=>x=1\end{matrix}\right.\)
\(b...x^3-19x+30=0\)
\(=>x^3+5x^2-2x^2-10x-3x^2-15x+6x+30=0\)
=>\(x^2\left(x+5\right)-2x\left(x+5\right)-3x\left(x+5\right)+6\left(x+5\right)=0\)
=>\(\left(x+5\right)\left(x^2-2x-3x+6\right)=0\)
=>\(\left(x+5\right)\left(x-3\right)\left(x-2\right)=0\)
=>\(\left\{\begin{matrix}x-3=0=>x=3\\x-2=0=>x=2\\x+5=0=>x=-5\end{matrix}\right.\)
Vậy x=-5;2;3
a) \(\left(x^2+4x+3\right)\left(x^2-5x+6\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+3\right)\left(x-2\right)\left(x-3\right)=0\)
=> \(\orbr{\begin{cases}x+1=0\\x+3=0\end{cases}}\) hoặc \(\orbr{\begin{cases}x-2=0\\x-3=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=-1\\x=-3\end{cases}}\) hoặc \(\orbr{\begin{cases}x=2\\x=3\end{cases}}\)
Vậy tập nghiệm PT \(S=\left\{-3;-1;2;3\right\}\)
b) \(\left(x^2-7x+12\right)\left(x^2+8x+7\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-4\right)\left(x+1\right)\left(x+7\right)=0\)
=> \(\orbr{\begin{cases}x-3=0\\x-4=0\end{cases}}\) hoặc \(\orbr{\begin{cases}x+1=0\\x+7=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=3\\x=4\end{cases}}\) hoặc \(\orbr{\begin{cases}x=-1\\x=-7\end{cases}}\)
Vậy tập nghiệm PT \(S=\left\{-7;-1;3;4\right\}\)
a, \(\left(x^2+4x+3\right)\left(x^2-5x+6\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+3\right)\left(x-3\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1;-3\\x=3;2\end{cases}}\)
b, \(\left(x^2-7x+12\right)\left(x^2+8x+7\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-3\right)\left(x+1\right)\left(x+7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=4;3\\x=-1;-7\end{cases}}\)
Ta có: \(x^3-7x^2+15x-25=0\)
\(\Leftrightarrow\left(x^3-5x^2\right)-\left(2x^2-10x\right)+\left(5x-25\right)=0\)
\(\Leftrightarrow x^2\left(x-5\right)-2x\left(x-5\right)+5\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x^2-2x+5\right)=0\)(1)
Ta có: \(x^2-2x+5\)
\(=x^2-2x+1+4\)
\(=\left(x-1\right)^2+4\)
Ta có: \(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-1\right)^2+4\ge4>0\forall x\)
hay \(x^2-2x+5>0\forall x\)(2)
Từ (1) và (2) suy ra x-5=0
hay x=5
Vậy: x=5
a. Ta có:
\(x^2-6x+3=0\Leftrightarrow x^2-2.x.3+3^2-6=0\)
\(\Leftrightarrow\left(x-3\right)^2-6=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=\sqrt{6}\\x-3=-\sqrt{6}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3+\sqrt{6}\\x=3-\sqrt{6}\end{matrix}\right.\)
Ta có:
\(x^2-7x+14=0\)
\(\Leftrightarrow x^2-2.x.\dfrac{7}{2}+\dfrac{49}{4}+\dfrac{7}{4}=0\)
\(\Leftrightarrow\left(x+\dfrac{7}{2}\right)^2+\dfrac{7}{4}=0\)
Ta có: \(\left(x+\dfrac{7}{2}\right)^2\ge0\)
=> \(\left(x+\dfrac{7}{2}\right)^2+\dfrac{7}{4}>0\)
=> pt vô nghiệm
a) ( x - 1 )2 - ( x - 1 ).( x + 1 ) = 3x - 5
\(\Leftrightarrow\) ( x - 1 ).( x - 1 ) - ( x - 1 ) .( x + 1 ) = 3x - 5
\(\Leftrightarrow\)( x - 1 ) .( x - 1 - x - 1 ) - 3x + 5 = 0
\(\Leftrightarrow\) ( x - 1 ) .( -2 ) - 3x + 5 = 0
\(\Leftrightarrow\) - 2x + 2 - 3x + 5 = 0
\(\Leftrightarrow\)- 5x + 7 = 0
\(\Leftrightarrow\) - 5x = - 7
\(\Leftrightarrow\) x = \(\frac{7}{5}\)
Vậy phương trình có nghiệm là : x = \(\frac{7}{5}\)
c) x3 - 6x2 + 9x = 0
\(\Leftrightarrow\)x.( x2 - 6x + 9 ) = 0
\(\Leftrightarrow\) x.( x - 3 )2 = 0
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\\left(x-3\right)^2=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-3=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)
Vậy phương trình có nghiệm là : x = 0 , x = 3
6x4 - x3 - 7x2 + x + 1 = 0
=> (x + 1)(3x + 1)(x - 1)(2x - 1) = 0
=> x + 1 = 0 => x = -1
hoặc 3x + 1 = 0 => x = -1/3
hoặc x - 1 = 0 => x = 1
hoặc 2x - 1 = 0 => x = 1/2
Vậy x = -1, x = -1/3, x = 1 , x = 1/2
\(x^3-7x+6=0\)
\(\Leftrightarrow x^3-x-6x+6=0\)
\(\Leftrightarrow(x^3-x)-(6x-6)=0\)
\(\Leftrightarrow x\left(x^2-1\right)-6\left(x-1\right)=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)-6\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[x\left(x+1\right)-6\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^2+x-6\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^2-3x+2x-6\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left[x\left(x-3\right)+2\left(x-3\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-3=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\\x=-2\end{matrix}\right.\)
Vậy phương trình có tập nghiệm \(S=\left\{-2;1;3\right\}\)