K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2018

\(x^3-7x+6=0\)

\(\Leftrightarrow x^3-x-6x+6=0\)

\(\Leftrightarrow(x^3-x)-(6x-6)=0\)

\(\Leftrightarrow x\left(x^2-1\right)-6\left(x-1\right)=0\)

\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)-6\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[x\left(x+1\right)-6\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left[x^2+x-6\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left[x^2-3x+2x-6\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left[x\left(x-3\right)+2\left(x-3\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-3=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\\x=-2\end{matrix}\right.\)

Vậy phương trình có tập nghiệm \(S=\left\{-2;1;3\right\}\)

a) 5x2 -8x +3 -0

=> 5x2 -5x -3x +3 =0

=>5x(x-1) -3(x-1) =0

=> (x-1)(5x -3) =0

=>x-1=0 hoặc 5x-3=0

+ nếu x-1=0 thì x =1

+nếu 5x-3=0 thì 5x=3=>x=3/5

b)x3 -7x +6 =0

=>x3 -x-6x+6 =0

=>x(x2 -1)-6(x-1) =0

=>x(x-1)(x+1) -6(x-1) =0

=>(x-1)[x(x+1)-6]=0

=>x-1=0 hoặc x(x+1)-6 =0

+ nếu x -1=0 thì x=1

+nếu  x(x+1)-6 =0 thì x(x+1) =6 => x=2

5 tháng 7 2017

a.5x2 -8x + 3=0

<=>5x2 -5x -3x +3=0

<=>(5x2-5x)(3x-3)=0

<=>5x(x-1) - 3(x-1)=0

<=>(x-1)(5x-3)=0

<=>\(\orbr{\begin{cases}x-1=0\\5x-3=0\end{cases}}\)

<=>\(\orbr{\begin{cases}x=1\\x=\frac{3}{5}\end{cases}}\)

b)x3-7x+6=0

<=>x3-x-6x+6=0

<=>(x3-x)-(6x-6)=0

<=>x(x2-1)-6(x-1)=0

<=>x(x+1)(x-1)-6(x-1)=0

<=>(x-1)[x(x+1)-6]=0

<=>\(\orbr{\begin{cases}x-1=0\\x\left(x+1\right)-6=0\end{cases}}\)

<=>\(\orbr{\begin{cases}x=1\\x=\frac{-1}{2}\end{cases}}\)

3 tháng 2 2017

a) \(x^3-7x+6=x^3+3x^2-x^2-3x-2x^2-6x+2x+6\)

=\(x^2\left(x+3\right)-x\left(x+3\right)-2x\left(x+3\right)+2\left(x+3\right)\)

=\(\left(x+3\right)\left(x^2-x-2x+2\right)\)

=\(\left(x+3\right)\left(x-2\right)\left(x-1\right)\)

=\(\left\{\begin{matrix}x+3=0=>x=-3\\x-2=0=x=2\\x-1=0=>x=1\end{matrix}\right.\)

3 tháng 2 2017

\(b...x^3-19x+30=0\)

\(=>x^3+5x^2-2x^2-10x-3x^2-15x+6x+30=0\)

=>\(x^2\left(x+5\right)-2x\left(x+5\right)-3x\left(x+5\right)+6\left(x+5\right)=0\)

=>\(\left(x+5\right)\left(x^2-2x-3x+6\right)=0\)

=>\(\left(x+5\right)\left(x-3\right)\left(x-2\right)=0\)

=>\(\left\{\begin{matrix}x-3=0=>x=3\\x-2=0=>x=2\\x+5=0=>x=-5\end{matrix}\right.\)

Vậy x=-5;2;3

23 tháng 8 2020

a) \(\left(x^2+4x+3\right)\left(x^2-5x+6\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+3\right)\left(x-2\right)\left(x-3\right)=0\)

=> \(\orbr{\begin{cases}x+1=0\\x+3=0\end{cases}}\) hoặc \(\orbr{\begin{cases}x-2=0\\x-3=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=-1\\x=-3\end{cases}}\) hoặc \(\orbr{\begin{cases}x=2\\x=3\end{cases}}\)

Vậy tập nghiệm PT \(S=\left\{-3;-1;2;3\right\}\)

b) \(\left(x^2-7x+12\right)\left(x^2+8x+7\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-4\right)\left(x+1\right)\left(x+7\right)=0\)

=> \(\orbr{\begin{cases}x-3=0\\x-4=0\end{cases}}\) hoặc \(\orbr{\begin{cases}x+1=0\\x+7=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=3\\x=4\end{cases}}\) hoặc \(\orbr{\begin{cases}x=-1\\x=-7\end{cases}}\)

Vậy tập nghiệm PT \(S=\left\{-7;-1;3;4\right\}\)

23 tháng 8 2020

a, \(\left(x^2+4x+3\right)\left(x^2-5x+6\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+3\right)\left(x-3\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1;-3\\x=3;2\end{cases}}\)

b, \(\left(x^2-7x+12\right)\left(x^2+8x+7\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x-3\right)\left(x+1\right)\left(x+7\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=4;3\\x=-1;-7\end{cases}}\)

Ta có: \(x^3-7x^2+15x-25=0\)

\(\Leftrightarrow\left(x^3-5x^2\right)-\left(2x^2-10x\right)+\left(5x-25\right)=0\)

\(\Leftrightarrow x^2\left(x-5\right)-2x\left(x-5\right)+5\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x^2-2x+5\right)=0\)(1)

Ta có: \(x^2-2x+5\)

\(=x^2-2x+1+4\)

\(=\left(x-1\right)^2+4\)

Ta có: \(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-1\right)^2+4\ge4>0\forall x\)

hay \(x^2-2x+5>0\forall x\)(2)

Từ (1) và (2) suy ra x-5=0

hay x=5

Vậy: x=5

15 tháng 3 2018

a. Ta có:

\(x^2-6x+3=0\Leftrightarrow x^2-2.x.3+3^2-6=0\)

\(\Leftrightarrow\left(x-3\right)^2-6=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=\sqrt{6}\\x-3=-\sqrt{6}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3+\sqrt{6}\\x=3-\sqrt{6}\end{matrix}\right.\)

15 tháng 3 2018

Ta có:

\(x^2-7x+14=0\)

\(\Leftrightarrow x^2-2.x.\dfrac{7}{2}+\dfrac{49}{4}+\dfrac{7}{4}=0\)

\(\Leftrightarrow\left(x+\dfrac{7}{2}\right)^2+\dfrac{7}{4}=0\)

Ta có: \(\left(x+\dfrac{7}{2}\right)^2\ge0\)

=> \(\left(x+\dfrac{7}{2}\right)^2+\dfrac{7}{4}>0\)

=> pt vô nghiệm

20 tháng 4 2019

a) ( x - 1 )2 - ( x - 1 ).( x + 1 ) = 3x - 5

\(\Leftrightarrow\) ( x - 1 ).( x - 1 ) - ( x - 1 ) .( x + 1 ) = 3x - 5

\(\Leftrightarrow\)( x - 1 ) .( x - 1 - x - 1 ) - 3x + 5 = 0

\(\Leftrightarrow\) ( x - 1 ) .( -2 ) - 3x + 5 = 0

\(\Leftrightarrow\) - 2x + 2 - 3x + 5 = 0

\(\Leftrightarrow\)- 5x + 7 = 0

\(\Leftrightarrow\) - 5x = - 7

\(\Leftrightarrow\) x = \(\frac{7}{5}\)

Vậy phương trình có nghiệm là : x = \(\frac{7}{5}\)

c) x3 - 6x2 + 9x = 0

\(\Leftrightarrow\)x.( x2 - 6x + 9 ) = 0

\(\Leftrightarrow\) x.( x - 3 )2 = 0

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\\left(x-3\right)^2=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-3=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)

Vậy phương trình có nghiệm là : x = 0 , x = 3

16 tháng 2 2016

cái này bạn cố gắng phân tích ra đi

16 tháng 2 2016

6x4 - x- 7x+ x + 1 = 0

=> (x + 1)(3x + 1)(x - 1)(2x - 1) = 0

=> x + 1 = 0 => x = -1

hoặc 3x + 1 = 0 => x = -1/3

hoặc x - 1 = 0 => x = 1

hoặc 2x - 1 = 0 => x = 1/2

Vậy x = -1, x = -1/3, x = 1 , x = 1/2

27 tháng 3 2020
https://i.imgur.com/cGrmxY5.jpg
22 tháng 1 2017

x=2 nha bn

chuc bn hoc tot

happy new year

17 tháng 1 2017

a. dùng máy tính ta bấm được 1 nghiệm x=2/3

=> 3x3-6x2-6x-2x2+4x+4=0

<=> 3x(x2-2x-2)-2(x2-2x-2)=0

<=> (x2-2x-2)(3x-2)=0

\(\Leftrightarrow\left[\begin{matrix}x=1+\sqrt{3}\\x=1-\sqrt{3}\\x=\frac{2}{3}\end{matrix}\right.\)