\(x^2\)-2x+y\(^2\)-8y+17=0

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2018

\(x^2-2x+y^2-8y+17=0\)

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2-8y+16\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y-4\right)^2=0\)

\(\left(x-1\right)^2\ge0\)

\(\left(y-4\right)^2\ge0\)

\(\Rightarrow\left(x-1\right)^2=\left(y-4\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y-4\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=4\end{matrix}\right.\)

Vậy phương trình có nghiệm \(\left(x,y\right)=\left(1;4\right)\)

4 tháng 3 2018

thanksyeu

28 tháng 4 2018

2) \(\dfrac{x}{2}\)-\(\dfrac{x}{10}\)<\(\dfrac{1}{2}-\dfrac{1}{3}\)

<=>\(\dfrac{x}{2}\)-\(\dfrac{x}{10}\)<\(\dfrac{1}{6}\)

=>15x-3x<5

<=>12x<5

<=>x<\(\dfrac{5}{12}\)

=> S={x|x<\(\dfrac{5}{12}\)}

NV
17 tháng 4 2019

a/

\(9x^2+25y^2+1+30xy-6x-10y+4y^2-20y+25=0\)

\(\Leftrightarrow\left(3x+5y-1\right)^2+\left(2y-5\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x+5y-1=0\\2y-5=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-\frac{23}{6}\\y=\frac{5}{2}\end{matrix}\right.\)

b/

\(4x^2+4y^2+8xy+x^2-2x+1+y^2+2y+1=0\)

\(\Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x-1=0\\y+1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

c/

\(y^2-2y+1+2=\frac{6}{x^2+2x+1+3}\)

\(\Leftrightarrow\left(y-1\right)^2+2=\frac{6}{\left(x+1\right)^2+3}\)

Ta có \(VT=\left(y-1\right)^2+2\ge2\)

\(\left(x+1\right)^2+3\ge3\Rightarrow VP=\frac{6}{\left(x+1\right)^2+3}\le\frac{6}{3}=2\)

\(\Rightarrow VT\ge VP\)

Dấu "=" xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}y-1=0\\x+1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)

d/

\(\frac{-9x^2+18x-9-8}{x^2-2x+1+2}=y^2+4y+4-4\)

\(\Leftrightarrow\frac{-9\left(x-1\right)^2-8}{\left(x-1\right)^2+2}=\left(y+2\right)^2-4\)

\(\Leftrightarrow\frac{-9\left(x-1\right)^2-18+10}{\left(x-1\right)^2+2}=\left(y+2\right)^2-4\)

\(\Leftrightarrow-9+\frac{10}{\left(x-1\right)^2+2}=\left(y+2\right)^2-4\)

\(\Leftrightarrow\frac{10}{\left(x-1\right)^2+2}=\left(y+2\right)^2+5\)

Ta có \(\left(x-1\right)^2+2\ge2\Rightarrow\frac{10}{\left(x-1\right)^2+2}\le\frac{10}{2}=5\Rightarrow VT\le5\)

\(\left(y+2\right)^2+5\ge5\Rightarrow VP\ge5\)

\(\Rightarrow VT\le VP\)

Dấu "=" xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

a)

\(x-2\left|x+1\right|=3\\ -2\left|x+1\right|=3-x\)

\(\left[{}\begin{matrix}nếu\:x\ge-1\:thì\left|x+1\right|=x+1\\nếu\:x< -1\:thì\:\left|x+1\right|=-x-1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}-2\left(x+1\right)=3-x\left(với\: x\ge-1\: \right)\\-2\left(-x-1\right)=3-x\left(với\: x< -1\right)\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}-2x-2=3-x\\2x+2=3-x\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-5\left(loại\right)\\x=-\dfrac{1}{3}\left(loại\right)\end{matrix}\right.\)

vậy phương trình đã cho vô nghiệm.

b)

\(6-\left|3x-1\right|=5\\ -\left|3x-1\right|=-1\\ \left|3x-1\right|=1\\ \Rightarrow\left[{}\begin{matrix}3x-1=1\\3x-1=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=0\end{matrix}\right.\)

vậy phương trình đã cho có tập nghiệm là S={0;2/3}

c)

\(\left|2x-1\right|=x+2\\ \Rightarrow\left(2x-1\right)^2=\left(x+2\right)^2\\ \left(2x-1\right)^2-\left(x+2\right)^2=0\\ \left(2x-1+x+2\right)\left(2x-1-x-2\right)=0\\ \left(3x+1\right)\left(x-3\right)=0\\ \Rightarrow\left[{}\begin{matrix}3x+1=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=3\end{matrix}\right.\)

vậy phương trình đã cho có tập nghiệm là S={-1/3;3}

d)

\(\left|2x-7\right|-x-3=0\\ \left|2x-7\right|=x+3\\ \Rightarrow\left(2x-7\right)^2=\left(x+3\right)^2\\ \left(2x-7\right)^2-\left(x+3\right)^2=0\\ \left(2x-7+x+3\right)\left(2x-7-x-3\right)=0\\ \left(3x-4\right)\left(x-10\right)=0\\ \Rightarrow\left[{}\begin{matrix}3x-4=0\\x-10=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{4}{3}\\x=10\end{matrix}\right.\)

vậy phương trình đã cho có tập nghiệm là S={4/3;10}

25 tháng 8 2017

Nguyễn Huy Tú Akai Haruma Hồng Phúc Nguyễn Toshiro Kiyoshi giúp mk vs

13 tháng 9 2017

Mấy chế em xin câu 3 ạ :>>

3. Giải pt :

\(x^2-10x+16=0\)

\(\Leftrightarrow x^2-8x-2x+16=0\)

\(\Leftrightarrow\left(x-8\right)\cdot\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-8=0\\x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=8\\x=2\end{matrix}\right.\)

Vậy gt của x để bt đạt giá trị bằng 0 là \(x\in\left\{2;8\right\}\)

13 tháng 9 2017

4. \(2x^2+2xy+y^2+2x+1=0\)

\(\Leftrightarrow y^2+2xy+2x^2+2x+1=0\)

\(\Leftrightarrow y^2+2xy+x^2+x^2+2x+1=0\)

\(\Leftrightarrow\left(y+x\right)^2+\left(x+1\right)^2=0\)

\(\Rightarrow x+1=0\Rightarrow x=-1\)

\(\Rightarrow y+x=0\Leftrightarrow y-1=0\Rightarrow y=1\)

Vậy giá trị của \(x\) là -1. (Nếu kết luận cả y thì giá trị của \(y\) là 1)

23 tháng 6 2020

a)

\(\frac{201-x}{99}+\frac{203-x}{97}+\frac{205-x}{95}+3=0\\ \Leftrightarrow\frac{201-x}{99}+\frac{99}{99}+\frac{203-x}{97}+\frac{97}{97}+\frac{205-x}{95}+\frac{95}{95}+4=4\\ \Leftrightarrow\frac{300-x}{99}+\frac{300-x}{97}+\frac{300-x}{95}=0\)\(\Leftrightarrow\left(300-x\right)\left(\frac{1}{99}+\frac{1}{97}+\frac{1}{95}\right)=0\) (*)

Do \(\left(\frac{1}{99}+\frac{1}{97}+\frac{1}{95}\right)\ne0\)

nên (*) \(\Leftrightarrow300-x=0\\ \Leftrightarrow x=300\)

b)

\(\frac{2-x}{2002}-1=\frac{1-x}{2003}-\frac{x}{2004}\\ \Leftrightarrow\frac{2-x}{2002}+\frac{2002}{2002}-1+1=\frac{1-x}{2003}+\frac{2003}{2003}-\frac{x}{2004}+\frac{2004}{2004}\\ \Leftrightarrow\frac{2004-x}{2002}=\frac{2004-x}{2003}-\frac{2004-x}{2004}\\ \Leftrightarrow\frac{2004-x}{2002}-\frac{2004-x}{2003}+\frac{2004-x}{2004}=0\)

\(\Leftrightarrow\left(2004-x\right)\left(\frac{1}{2002}-\frac{1}{2003}+\frac{1}{2004}\right)=0\) (*)

Do \(\left(\frac{1}{2002}-\frac{1}{2003}+\frac{1}{2004}\right)\ne0\)

nên (*) \(\Leftrightarrow2004-x=0\)

\(\Leftrightarrow x=2004\)

c) \(\left|2x-3\right|=2x-3\) (1)

ĐKXĐ: \(\\ 2x-3\ge0\)

\(\Leftrightarrow x\ge\frac{3}{2}\)

\(\left(1\right)\Leftrightarrow\left[{}\begin{matrix}2x-3=2x-3\\2x-3=-2x+3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}0x=0\\4x=6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\forall x\in R\\x=\frac{3}{2}\left(tm\right)\end{matrix}\right.\)

Vậy \(S=\left\{\frac{3}{2}\right\}\)

1 tháng 5 2019

d, 2x2-5x-3 = 0

\(\Leftrightarrow\)2x2-6x+x-3= 0

\(\Leftrightarrow\)(2x2-6x) +(x-3) = 0

\(\Leftrightarrow\)2x(x-3) + (x-3) = 0

\(\Leftrightarrow\)(x-3) (2x+1) = 0

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\frac{-1}{2}\end{matrix}\right.\)

Vậy phương trình có tập nghiệm S =\(\left\{3;\frac{-1}{2}\right\}\)

11 tháng 12 2022

=>2x^2-2x+1/2+8y^2+4y+1/2=0

=>2(x-1/2)^2+8(y^2-1/2y+1/16)=0

=>2(x-1/2)^2+8(y-1/4)^2=0

=>x=1/2 và y=1/4

P=(x-2y)^2020=(1/2-1/2)^2020=0

9 tháng 6 2017

a)

\(3x^2+2x-1=0\)

\(\Leftrightarrow3x^2-x+3x-1=0\)

\(\Leftrightarrow x\left(3x-1\right)+\left(3x-1\right)=0\)

\(\Leftrightarrow\left(3x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-1=0\\x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=-1\end{matrix}\right.\)

b)

\(x^2-5x+6=0\)

\(\Leftrightarrow x^2-3x-2x+6=0\)

\(\Leftrightarrow x\left(x-3\right)-2\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

9 tháng 6 2017

a, \(3x^2+2x-1=0\)

\(\Rightarrow3x^2-x+3x-1=0\)

\(\Rightarrow\left(3x^2-x\right)+\left(3x-1\right)=0\)

\(\Rightarrow x.\left(3x-1\right)+\left(3x-1\right)=0\)

\(\Rightarrow\left(3x-1\right).\left(x+1\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}3x-1=0\\x+1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3x=1\\x=-1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{3}\\x=-1\end{matrix}\right.\)

Vậy......

b, \(x^2-5x+6=0\)

\(\Rightarrow x^2-3x-2x+6=0\)

\(\Rightarrow\left(x^2-3x\right)-\left(2x-6\right)=0\)

\(\Rightarrow x.\left(x-3\right)-2.\left(x-3\right)=0\)

\(\Rightarrow\left(x-3\right).\left(x-2\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x-3=0\\x-2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)

Vậy......

Chúc bạn học tốt!!!