Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐKXĐ: 1\(\le x\le7\)
phương trình <=> \(x-1-2\sqrt{x-1}+2\sqrt{7-x}-\sqrt{\left(7-x\right)\left(x-1\right)}=0\\ \Leftrightarrow\sqrt{x-1}\left(\sqrt{x-1}-2\right)-\sqrt{7-x}\left(\sqrt{x-1}-2\right)=0\\ \Leftrightarrow\left(\sqrt{x-1}-2\right)\left(\sqrt{x-1}-\sqrt{7-x}\right)=0\\\Leftrightarrow\left[{}\begin{matrix}x-1=4\\x-1=7-x\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=4\end{matrix}\right.\left(thoả.mãn\right) \)
Vậy S={5,4} là tập nghiệm của phương trình
b) PT <=> \(2x^2-6x+4=\sqrt[2]{\left(x+2\right)\left(x^2-2x+4\right)}\)
Đặt \(\sqrt[2]{x+2}=y,\sqrt[2]{x^2-2x+4}=z\) (y,z>=0)
=> z^2-y^2=x^2-3x+2
pt<=> 2z^2-2y^2=3yz <=> (2z+y)(z-2y)=0
đến đó tự làm tự đặt dkxd
a)\(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=3\)
\(\Leftrightarrow\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}=3\)
\(\Leftrightarrow\left|1-x\right|+\left|x-2\right|=3\)
Có: \(VT=\left|1-x\right|+\left|x-2\right|\)
\(\ge\left|1-x+x-2\right|=3=VP\)
Khi \(x=0;x=3\)
b)\(\sqrt{x^2-10x+25}=3-19x\)
\(\Leftrightarrow\sqrt{\left(x-5\right)^2}=3-19x\)
\(\Leftrightarrow\left|x-5\right|=3-19x\)
\(\Leftrightarrow x^2-10x+25=361x^2-114x+9\)
\(\Leftrightarrow-360x^2+104x+16=0\)
\(\Leftrightarrow-5\left(5x-2\right)\left(9x+1\right)=0\)
\(\Rightarrow x=\frac{2}{5};x=-\frac{1}{9}\)
c)\(\sqrt{2x-2+2\sqrt{2x-3}}+\sqrt{2x+13+8\sqrt{2x-3}}=5\)
\(\Leftrightarrow\sqrt{2x-3+2\sqrt{2x-3}+1}+\sqrt{2x-3+8\sqrt{2x-3}+16}=5\)
\(\Leftrightarrow\sqrt{\left(\sqrt{2x-3}+1\right)^2}+\sqrt{\left(\sqrt{2x-3}+4\right)^2}=5\)
\(\Leftrightarrow\left|\sqrt{2x-3}+1\right|+\left|\sqrt{2x-3}+4\right|=5\)
\(\Leftrightarrow2\sqrt{2x-3}+5=5\)\(\Leftrightarrow\sqrt{2x-3}=0\Leftrightarrow x=\frac{3}{2}\)
b2
\(\left(\sqrt{2x^2-6x+2}-2x+3\right)\left(-\sqrt{2x^2-6x+2}-3x+4\right)=0\)
Dự đoán \(\frac{1}{2}\)là nghiệm của phương trình ( casio :v)
Áp dụng AM-GM:\(2VF=3.\sqrt[3]{4.8x\left(4x^2+3\right)}\le4+8x+4x^2+3=4x^2+8x+7\)
và \(4x^2+8x+7\le8x^4+2x^2+6x+8\)vì nó tương đương \(\left(2x-1\right)^2\left(2x^2+2x+1\right)\ge0\)
Do đó \(VT\ge VF\)
Dấu = xảy ra khi\(x=\frac{1}{2}\)
\(\sqrt{x^2-2x+1}\) + \(\sqrt{x^2-4x+4}\) = 3
<=> \(\sqrt{\left(x-1\right)^2}\)+ \(\sqrt{\left(x-2\right)^2}\)= 3
<=> \(\left|x-1\right|\)+\(\left|x-2\right|\)=3
<=> x - 1 + x - 2 = 3
<=> 2x - 3 = 3
<=> x = \(\dfrac{6}{2}\)= 3
b ,
\(\sqrt{x^2-10x+25}=3-19x\)
<=>\(\sqrt{\left(x-5\right)^2}=3-19x\)
<=> \(\left|x-5\right|=3-19x\)
<=> \(x-5=3-19x\)
\(\Leftrightarrow x+19x=3+5\)
\(\Leftrightarrow20x=8\Leftrightarrow x=\dfrac{8}{20}=\dfrac{2}{5}\)
Hung nguyen, Trần Thanh Phương, Sky SơnTùng, @tth_new, @Nguyễn Việt Lâm, @Akai Haruma, @No choice teen
help me, pleaseee
Cần gấp lắm ạ!
\(a,\sqrt{x-2\sqrt{x}-1}-\sqrt{x-1}=1.\)
\(\Rightarrow\sqrt{\left(\sqrt{x}-1\right)^2}-\sqrt{x-1}=1\)
\(\Rightarrow x-1-\sqrt{x-1}=1\)
\(\Rightarrow\sqrt{x-1}=x-1+1\)
\(\Rightarrow x-1=x^2\Rightarrow x^2-x+1=0\) ( vô nghiệm vì nó luôn lớn hơn 0 )
\(đkxđ\Leftrightarrow2x-1\ge0\Rightarrow x\ge\frac{1}{2}\)
\(c,\sqrt{x+\sqrt{2x-1}}+\sqrt{x-\sqrt{2x-1}}=\sqrt{2}.\)
\(\Rightarrow\sqrt{2x+2\sqrt{2x-1}}+\sqrt{2x-2\sqrt{2x-1}}=2\)
\(\Rightarrow\sqrt{2x-1+2\sqrt{2x-1}+1}+\sqrt{2x-1-2\sqrt{2x-1}+1}=2\)
\(\Rightarrow\sqrt{\left(\sqrt{2x-1}+1\right)^2}+\sqrt{\left(\sqrt{2x-1}-1\right)^2}=2\)
\(\Rightarrow\sqrt{2x-1}+1+\sqrt{2x-1}-1=2\)
\(\Rightarrow\sqrt{2x-1}+\sqrt{2x-1}=2\)
\(\Rightarrow\sqrt{2x-1}=1\Rightarrow\sqrt{2x-1}^2=1\)
\(\Rightarrow2x-1=1\Rightarrow2x=2\Leftrightarrow x=1\)\(\left(tm\right)\)
d tương tự nha , nhân thêm 2 vế với \(\sqrt{6}\)là ra
\(\sqrt{x^2+2x+5}=-x^2-2x+1\)
\(\Leftrightarrow\sqrt{\left(x+1\right)^2+4}=-\left(x+1\right)^2+2\)
Ta thấy :
\(-\left(x+1\right)^2+2\le2\) Với \(\forall x\in R\)
\(\sqrt{\left(x+1\right)^2+4}\ge2\) Với \(\forall x\in R\)
\(\Rightarrow\sqrt{\left(x+1\right)^2+4}=-\left(x+1\right)^2+2\) Khi x + 1 = 0 \(\Leftrightarrow\) x = -1
Vậy Phương trình có nghiệm x = -1 .
\(\sqrt{x^2-6x+10}+\sqrt{4x^2-24x+45}=-x^2+6x-5\)
Ta thấy :
\(\sqrt{x^2-6x+10}=\sqrt{\left(x-3\right)^2+1}\) \(\ge1\) Với \(\forall x\in R\)
\(\sqrt{4x^2-24x+45}=\sqrt{4\left(x-3\right)^2+9}\ge3\) Với \(\forall x\in R\)
\(-x^2+6x-5=-\left(x-3\right)^2+4\le4\) Với \(\forall x\in R\)
\(\Rightarrow VT\ge4\) ; \(VP\le4\)
\(\Rightarrow VT=VP=4\)
Dấu "=" xảy ra khi x - 3 = 0 \(\Leftrightarrow\) x = 3
Vậy phương trình có nghiệm x = 3 .
5.
ĐKXĐ: \(-\frac{1}{2}\le x\le\frac{1}{2}\)
\(\Leftrightarrow\frac{1}{2}-x+\frac{1}{2}+x+2\sqrt{\left(\frac{1}{2}-x\right)\left(\frac{1}{2}+x\right)}=1\)
\(\Leftrightarrow\sqrt{\left(\frac{1}{2}-x\right)\left(\frac{1}{2}+x\right)}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=-\frac{1}{2}\end{matrix}\right.\)
6.
ĐKXĐ: \(x\ge1\)
\(\Leftrightarrow\sqrt{x-1}+\sqrt{x^3+x^2+x+1}=1+\sqrt{\left(x^2-1\right)\left(x^2+1\right)}\)
\(\Leftrightarrow\sqrt{x-1}+\sqrt{x^3+x^2+x+1}=1+\sqrt{\left(x-1\right)\left(x+1\right)\left(x^2+1\right)}\)
\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x^3+x^2+x+1\right)}-\sqrt{x-1}-\left(\sqrt{x^3+x^2+x+1}-1\right)=0\)
\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x^3+x^2+x+1}-1\right)-\left(\sqrt{x^3+x^2+x+1}-1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)\left(\sqrt{x^3+x^2+x+1}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{x^3+x^2+x+1}=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x^3+x^2+x=0\left(vn\right)\end{matrix}\right.\)
2.
ĐKXĐ: \(x\ge-1\)
\(\Leftrightarrow2\left(x^2+2\right)=5\sqrt{\left(x+1\right)\left(x^2-x+1\right)}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\ge0\\\sqrt{x^2-x+1}=b>0\end{matrix}\right.\)
\(\Leftrightarrow2\left(a^2+b^2\right)=5ab\)
\(\Leftrightarrow2a^2-5ab+2b^2=0\)
\(\Leftrightarrow\left(a-2b\right)\left(2a-b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2a=b\\a=2b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2\sqrt{x+1}=\sqrt{x^2-x+1}\\\sqrt{x+1}=2\sqrt{x^2-x+1}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4x+4=x^2-x+1\\x+1=4x^2-4x+4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-5x-3=0\\4x^2-5x+3=0\end{matrix}\right.\) \(\Leftrightarrow...\)
Lời giải:
ĐKXĐ: $-10\leq x\leq 8$
$x^2+2x+7=(x+1)^2+6\geq 6(1)$
Áp dụng BĐT Bunhiacopxky:
$(\sqrt{8-x}+\sqrt{x+10})^2\leq (8-x+x+10)(1+1)=36$
$\Rightarrow \sqrt{8-x}+\sqrt{x+10}\leq 6(2)$
Từ $(1); (2)\Rightarrow \sqrt{8-x}+\sqrt{x+10}\leq 6\leq x^2+2x+7$
Để pt xảy ra thì $\sqrt{8-x}+\sqrt{x+10}=6=x^2+2x+7$
$\Leftrightarrow x=-1$
ĐKXĐ : -10 \(\le x\le8\)
Ta có \(3\sqrt{8-x}+3\sqrt{10+x}\le\dfrac{3^2+8-x}{2}+\dfrac{3^2+10+x}{2}=18\)
(BĐT Cauchy)
=> \(\sqrt{8-x}+\sqrt{10+x}\le6\)
=> VT \(\le6\) (1)
Lại có VP = x2 + 2x + 7 = (x + 1)2 + 6 \(\ge6\) (2)
Từ (1) (2) => Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}3=\sqrt{8-x}\\3=\sqrt{10+x}\\x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\x=-1\\x=-1\end{matrix}\right.\Leftrightarrow x=-1\)
Vậy x = -1 là nghiệm phương trình