Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
t lm bừa , nx t lm roài thì cấm gáy :)
\(sina=\frac{1}{5}\)
\(a=arcsin\left(\frac{1}{5}\right)\)
\(arcsin\left(\frac{1}{5}\right)\Leftrightarrow a=0,20135792\)
\(a=\left(3,14159265\right)-0,20135795\)
\(a=2,94023473\)
Chu kì đc sử dụng bằng cách : \(\frac{2n}{|b|}\)
Thay thế b với 1 trong công thức cho chu kì ta đc: \(\frac{2n}{|1|}\)
Chu kỳ của hàm sin(a) là 2n nên các giá trị sẽ lặp lại sau mỗi 2n radian theo cả hai hướng.
a=0,20135792+2n,2,94023473+2n, cho mọi số nguyên n
\(\frac{sinx}{x}\) = 1/2 tương đương sinx= 1/2 *x tương đương x= arcsin1/2x + k2pi hoặc x= pi trừ arcsin 1/2+ k2pi.
Lời giải:
\(\sin ^2(\frac{\pi}{6}-x)=\frac{1}{4}\)
\(\Rightarrow \left[\begin{matrix} \sin (\frac{\pi}{6}-x)=\frac{1}{2}\\ \sin (\frac{\pi}{6}-x)=\frac{-1}{2}\end{matrix}\right.\)
Nếu \(\sin (\frac{\pi}{6}-x)=\frac{1}{2}\Rightarrow \left[\begin{matrix} \frac{\pi}{6}-x=\frac{\pi}{6}-2k\pi \\ \frac{\pi}{6}-x=\frac{5\pi}{6}-2k\pi \end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} x=2k\pi \\ x=2k\pi-\frac{2}{3}\pi \end{matrix}\right.\) với $k$ nguyên.
Nếu \(\sin (\frac{\pi}{6}-x)=\frac{-1}{2}\Rightarrow \left[\begin{matrix} \frac{\pi}{6}-x=\frac{-\pi}{6}-2k\pi \\ \frac{\pi}{6}-x=\frac{7\pi}{6}-2k\pi \end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} x=\frac{\pi}{3}+2k\pi \\ x=(2k-1)\pi\end{matrix}\right.\) với $k$ nguyên.
Gộp cả 2TH trên lại ta suy ra \(x=n\pi \) hoặc \(x=n\pi+\frac{\pi}{3}\) với $n$ là số nguyên bất kỳ.
ĐKXĐ: \(x\ne k\pi\)
\(\Leftrightarrow sin5x=5sinx\)
\(\Leftrightarrow sin\left(4x+x\right)-5sinx=0\)
\(\Leftrightarrow sin4x.cosx+cos4x.sinx-5sinx=0\)
\(\Leftrightarrow4sinx.cos^2x.cos2x+cos4x.sinx-5sinx=0\)
\(\Leftrightarrow4cos^2x.cos2x+cos4x-5=0\)
\(\Leftrightarrow2\left(1+cos2x\right).cos2x+2cos^22x-1-5=0\)
\(\Leftrightarrow2cos^22x+cos2x-3=0\Rightarrow\left[{}\begin{matrix}cos2x=1\\cos2x=-\frac{3}{2}\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow sinx=0\) (loại)
Vậy pt đã cho vô nghiệm
ĐKXĐ: \(sinx\ne0\)
\(2cos^2x-3cosx+1=sinx-2sinx^2cosx+2cos^2x.sinx\)
\(\Leftrightarrow2cos^2x\left(1-sinx\right)+1-sinx-3cosx+2sin^2x.cosx=0\)
\(\Leftrightarrow\left(1-sinx\right)\left(2cos^2x+1\right)-cosx\left(3-2sin^2x\right)=0\)
\(\Leftrightarrow\left(1-sinx\right)\left(2cos^2x+1\right)-cosx\left(1+2cos^2x\right)=0\)
\(\Leftrightarrow\left(1-sinx-cosx\right)\left(2cos^2x+1\right)=0\)
\(\Leftrightarrow sinx+cosx=1\)
\(\Leftrightarrow sin\left(x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{4}=\frac{\pi}{4}+k2\pi\\x+\frac{\pi}{4}=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\left(ktm\right)\\x=\frac{\pi}{2}+k2\pi\end{matrix}\right.\)
b/ ĐKXĐ: ...
\(\Leftrightarrow tan^2x+1-\frac{4}{cosx}+4=0\)
\(\Leftrightarrow\frac{1}{cos^2x}-\frac{4}{cosx}+4=0\)
\(\Leftrightarrow\left(\frac{1}{cosx}-2\right)^2=0\)
\(\Leftrightarrow\frac{1}{cosx}=2\)
\(\Rightarrow cosx=\frac{1}{2}\)
\(\Rightarrow x=\pm\frac{\pi}{3}+k2\pi\)
a/ ĐKXĐ: ...
\(\Leftrightarrow\sqrt{3}\frac{sinx}{cosx}+1=\frac{1}{cos^2x}\)
\(\Leftrightarrow\sqrt{3}tanx+1=1+tan^2x\)
\(\Leftrightarrow tanx\left(tanx-\sqrt{3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=0\\tanx=\sqrt{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{\pi}{3}+k\pi\end{matrix}\right.\)
๖²⁴ʱ✰๖ۣۜBεσмɠүυ✰⁀ᶦᵈᵒᶫ - Trang của ๖²⁴ʱ✰๖ۣۜBεσмɠүυ✰⁀ᶦᵈᵒᶫ - Học toán với OnlineMath mày giải đi.
Tao ns mày lun, mày ko hơn tao đâu mà lên mặt nhá
Ko bt lm thì xin lỗi anh mày vx còn kịp
Giải đầy đủ ra nghe con
Ngu mà sung, tth còn đc chứ mày trình gà mờ ngu đần