Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
\(\Leftrightarrow\left[{}\begin{matrix}x^2-5x-4=x^2-4\\x^2-5x-4=4-x^2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-5x=0\\2x^2-5x-8=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{5\pm\sqrt{89}}{4}\\\end{matrix}\right.\)
b/ - Với \(x\ge3\) pt trở thành:
\(x-1+3\left(x-3\right)=6\Leftrightarrow4x=16\Rightarrow x=4\)
- Với \(x\le1\) pt trở thành:
\(1-x+3\left(3-x\right)=6\)
\(\Leftrightarrow x=1\)
- Với \(1< x< 3\) pt trở thành:
\(x-1+3\left(3-x\right)=6\)
\(\Leftrightarrow-2x=-2\Rightarrow x=1\) (loại)
c/ ĐKXĐ: \(x\ne\pm2\)
\(\left[{}\begin{matrix}\frac{x^2-6x-4}{x^2-4}=1\\\frac{x^2-6x-4}{x^2-4}=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-6x-4=x^2-4\\x^2-6x-4=4-x^2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-6x=0\\2x^2-6x-8=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=4\end{matrix}\right.\)
d/ - Với \(x\ge2\) pt trở thành:
\(x-1-2\left(x-2\right)=x^2-x-3\)
\(\Leftrightarrow x^2=6\Rightarrow\left[{}\begin{matrix}x=\sqrt{6}\\x=-\sqrt{6}\left(l\right)\end{matrix}\right.\)
- Với \(x\le1\) pt trở thành:
\(1-x-2\left(2-x\right)=x^2-x-3\) làm tương tự
- Với \(1< x< 2\):
\(x-1-2\left(2-x\right)=x^2-x-3\)
Lời giải:
ĐK: \(-2\leq x\leq 4\)
Ta có: \(x^2-2x+8-4\sqrt{(4-x)(x+2)}=0\)
\(\Leftrightarrow x^2-2x+8-4\sqrt{2x+8-x^2}=0\)
\(\Leftrightarrow 16-(2x-x^2+8)-4\sqrt{2x+8-x^2}=0\)
Đặt \(\sqrt{2x+8-x^2}=t\)
\(\Rightarrow 16-t^2-4t=0\)
\(\Rightarrow t=-2\pm 2\sqrt{5}\). Vì \(t\geq 0\Rightarrow t=-2+2\sqrt{5}\)
\(\Rightarrow t^2=2x+8-x^2=24-8\sqrt{5}\)
\(\Leftrightarrow x^2-2x+16-8\sqrt{5}=0\)
\(\Rightarrow x=1\pm \sqrt{8\sqrt{5}-15}\) (đều thỏa mãn)
Vậy............
a/ \(\Leftrightarrow\left(x+2\right)^2-3\left|x+2\right|=0\)
\(\Leftrightarrow\left|x+2\right|^2-3\left|x+2\right|=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left|x+2\right|=0\\\left|x+2\right|=3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-2\\x+2=3\\x+2=-3\end{matrix}\right.\)
b/
\(\Leftrightarrow\left|x+2\right|^2-3\left|x+2\right|-4=0\)
\(\Leftrightarrow\left(\left|x+2\right|+1\right)\left(\left|x+2\right|-4\right)=0\)
\(\Leftrightarrow\left|x+2\right|-4=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=4\\x+2=-4\end{matrix}\right.\)
c/
\(\Leftrightarrow\left|x^2-3\right|^2-6\left|x^2-3\right|+5=0\)
\(\Leftrightarrow\left(\left|x^2-3\right|-1\right)\left(\left|x^2-3\right|-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left|x^2-3\right|=1\\\left|x^2-3\right|=5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-3=1\\x^2-3=-1\\x^2-3=5\\x^2-3=-5\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2=4\\x^2=2\\x^2=8\\x^2=-2\left(l\right)\end{matrix}\right.\)
d/ ĐKXĐ: ...
\(\Leftrightarrow\frac{\left|x-2\right|^2}{\left(x-1\right)^2}+\frac{2\left|x-4\right|}{x-1}=3\)
Đặt \(\frac{\left|x-2\right|}{x-1}=a\)
\(a^2+2a-3=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left|x-2\right|=x-1\\\left|x-2\right|=-3\left(x-1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left|x-2\right|=x-1\left(x\ge1\right)\\\left|x-2\right|=3-3x\left(x\le1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=x-1\left(vn\right)\\x-2=1-x\\x-2=3-3x\\x-2=3x-3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{3}{2}\\x=\frac{4}{5}\\x=\frac{1}{2}\end{matrix}\right.\)
e/ ĐKXĐ: ...
Đặt \(\left|\frac{2x-1}{x+2}\right|=a>0\)
\(a-\frac{2}{a}=1\Leftrightarrow a^2-a-2=0\)
\(\Rightarrow\left[{}\begin{matrix}a=-1\left(l\right)\\a=2\end{matrix}\right.\) \(\Rightarrow\left|\frac{2x-1}{x+2}\right|=2\)
\(\Rightarrow\left[{}\begin{matrix}2x-1=2\left(x+2\right)\\2x-1=-2\left(x+2\right)\end{matrix}\right.\)
b/ ĐKXĐ; ...
\(\Leftrightarrow\left\{{}\begin{matrix}x^3+3x^2+3x+1-16x-16=\frac{8}{y^3}-\frac{8}{y}\\5\left(x^2+2x+2\right)=1+\frac{4}{y^2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+1\right)^3-16\left(x+1\right)=\frac{8}{y^3}-\frac{8}{y}\\5\left(x+1\right)^2=\frac{4}{y^2}-4\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x+1=a\\\frac{1}{y}=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a^3-16a=8b^3-8b\\5a^2=4b^2-4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a^3-8b^3=16a-8b\\4=-5a^2+4b^2\end{matrix}\right.\)
Nhân vế với vế:
\(4\left(a^3-8b^3\right)=4\left(4a-2b\right)\left(-5a^2+4b^2\right)\)
\(\Leftrightarrow21a^3-10a^2b-16ab^2=0\)
\(\Leftrightarrow a\left(21a^2-10ab-16b^2\right)=0\)
\(\Leftrightarrow a\left(7a-8b\right)\left(3a+2b\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}a=0\\7a=8b\\3a=-2b\end{matrix}\right.\) \(\Rightarrow...\)
a/ \(\left\{{}\begin{matrix}x^2+y+xy\left(x^2+y\right)+xy+1=-\frac{1}{4}\\x^4+y^2+2x^2y+xy+1=-\frac{1}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x^2+y+1\right)\left(xy+1\right)=-\frac{1}{4}\\\left(x^2+y\right)^2+xy+1=-\frac{1}{4}\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x^2+y=a\\xy+1=b\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left(a+1\right)b=-\frac{1}{4}\\a^2+b=-\frac{1}{4}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(a+1\right)b=-\frac{1}{4}\\b=-\frac{1}{4}-a^2\end{matrix}\right.\)
\(\Rightarrow\left(a+1\right)\left(-\frac{1}{4}-a^2\right)=-\frac{1}{4}\)
\(\Leftrightarrow4a^3+4a^2+a=0\Leftrightarrow a\left(2a+1\right)^2=0\)
\(\Rightarrow\left[{}\begin{matrix}a=0\Rightarrow b=-\frac{1}{4}\\a=-\frac{1}{2}\Rightarrow b=-\frac{1}{2}\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}x^2+y=0\\xy+1=-\frac{1}{4}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y=-x^2\\-x^3=-\frac{5}{4}\end{matrix}\right.\) \(\Rightarrow...\)
TH2: \(\left\{{}\begin{matrix}x^2+y=-\frac{1}{2}\\xy+1=-\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y=-\frac{1}{2}-x^2\\x\left(-\frac{1}{2}-x^2\right)=-\frac{5}{4}\end{matrix}\right.\) \(\Rightarrow...\)
ĐKXĐ:...
pt\(\Leftrightarrow4\left(x^2-2x\right)+16\sqrt{x^2-2x-3}-21=0\)
Đặt \(\sqrt{x^2-2x-3}=t\left(t\ge0\right)\Rightarrow t^2=x^2-2x-3\Leftrightarrow t^2+3=x^2-2x\)
\(\Rightarrow4\left(t^2+3\right)+16t-21=0\)
\(\Leftrightarrow4t^2+12+16t-21=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=\frac{1}{2}\\t=-\frac{9}{2}\left(l\right)\end{matrix}\right.\Rightarrow t=\frac{1}{2}\)
\(\Rightarrow x^2-2x-3=\frac{1}{4}\Leftrightarrow\left[{}\begin{matrix}x=\frac{2+\sqrt{17}}{2}\\x=\frac{2-\sqrt{17}}{2}\left(l\right)\end{matrix}\right.\)
Vậy \(x=\frac{2+\sqrt{17}}{2}\)