Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x\ne2\)
Áp dụng HĐT \(a^3-b^3=\left(a-b\right)^3+3ab\left(a-b\right)\)
\(\left(\frac{x-3}{x-2}\right)^3-\left(x-3\right)^3=16\)
\(\Leftrightarrow\left(\frac{\left(x-3\right)-\left(x-3\right)\left(x-2\right)}{x-2}\right)^3+\frac{3\left(x-3\right)^2}{\left(x-2\right)}\left(\frac{x-3}{x-2}-x+3\right)=16\)
\(\Leftrightarrow\left(\frac{\left(x-3\right)\left(3-x\right)}{\left(x-2\right)}\right)^3+\frac{3\left(x-3\right)^2}{x-2}\left(\frac{\left(x-3\right)\left(3-x\right)}{x-2}\right)=16\)
\(\Leftrightarrow\left(-\frac{\left(x-3\right)^2}{x-2}\right)^3-3.\left(\frac{\left(x-3\right)^2}{x-2}\right)^2=16\)
Đặt \(\frac{\left(x-3\right)^2}{x-2}=a\)
\(-a^3-3a^2=16\Leftrightarrow a^3+3a^2+16=0\Rightarrow a=-4\)
\(\Rightarrow\frac{\left(x-3\right)^2}{x-2}=-4\Leftrightarrow x^2-2x+1=0\Rightarrow x=1\)
\(A=\left(\frac{\sqrt{3}}{x^2+x\sqrt{x}+3}+\frac{3}{x^3-\sqrt{27}}\right)\left(\frac{x}{\sqrt{3}}+\frac{\sqrt{3}}{x}+1\right)\)
\(\Leftrightarrow A=\left[\frac{\sqrt{3}\left(x-\sqrt{3}\right)}{\left(x-\sqrt{3}\right)\left(x^2+x\sqrt{3}+3\right)}+\frac{3}{\left(x-\sqrt{3}\right)\left(x+x\sqrt{3}+3\right)}\right]\left(\frac{x^2+3+x\sqrt{3}}{x\sqrt{3}}\right)\)
\(\Leftrightarrow A=\frac{x\sqrt{3}-3+3}{\left(x-\sqrt{3}\right)\left(x^2+x\sqrt{3}+3\right)}.\frac{x^2+x\sqrt{3}+3}{x\sqrt{3}}\)
\(\Leftrightarrow A=\frac{1}{x-\sqrt{3}}\)
Hệ phương trình đề cho tương đương
\(\left\{{}\begin{matrix}\frac{1}{2}xy+18=\frac{1}{2}xy+x+y+2\\\frac{1}{2}xy-16=\frac{1}{2}xy+\frac{3}{2}x-y-3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x+y+2=18\\\frac{3}{2}x-y-3=-16\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=16\\\frac{3}{2}x-y=-13\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x+\frac{3}{2}x=3\\x+y=14\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{6}{5}\\y=\frac{74}{5}\end{matrix}\right.\)
KL: ........................
Link tham khảo: https://diendantoanhoc.net/topic/134563-gi%E1%BA%A3i-ph%C6%B0%C6%A1ng-tr%C3%ACnh-fracx-3x-23-x-3316/
Ta có: \(\dfrac{\left(x+3\right)\left(x-3\right)}{3}+2=x\left(1-x\right)\)
\(\Leftrightarrow\dfrac{x^2-9}{3}+\dfrac{6}{3}=\dfrac{3x\left(1-x\right)}{3}\)
\(\Leftrightarrow x^2-9+6=3x-3x^2\)
\(\Leftrightarrow x^2-3-3x+3x^2=0\)
\(\Leftrightarrow4x^2-3x-3=0\)
\(\Delta=9-4\cdot4\cdot\left(-3\right)=9+48=57\)
Vì \(\Delta>0\) nên phương trình có hai nghiệm phân biệt là
\(\left\{{}\begin{matrix}x_1=\dfrac{3-\sqrt{57}}{8}\\x_2=\dfrac{3+\sqrt{57}}{8}\end{matrix}\right.\)
Vậy: \(S=\left\{\dfrac{3-\sqrt{57}}{8};\dfrac{3+\sqrt{57}}{8}\right\}\)