\(\left(cos\frac{x}{4}-3sinx\right).sinx+\left(1+sin\frac{x}{4}-3cosx\right...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2015

\(pt\Leftrightarrow\cos\frac{x}{4}\sin x+\cos x+\sin\frac{x}{4}\cos x=3\left(\sin^2x+\cos^2x\right)=3\)

Mà \(\sin\alpha;\text{ }\cos\alpha\le1\forall\alpha\)

\(\Rightarrow\cos\frac{x}{4}.\sin x\le1.1;\text{ }\sin\frac{x}{4}.\cos x\le1.1;\text{ }\cos x\le1\forall x\)

\(\Rightarrow\cos\frac{x}{4}.\sin x+\sin\frac{x}{4}.\cos x+\cos x\le3\text{ }\forall x\)

Dấu "=" xảy ra khi \(\cos x=1;\text{ }\cos\frac{x}{4}.\sin x=1;\text{ }\cos x.\sin\frac{x}{4}=1\)

\(\Leftrightarrow\cos x=1;\text{ }\sin\frac{x}{4}=1;\text{ }\cos\frac{x}{4}.\sin x=1\)

Pt trên vô nghiệm do \(\cos x=1\text{ thì }\sin x=0\Rightarrow\cos\frac{x}{4}.\sin x=0\)

Vậy phương trình đã cho vô nghiệm.

1: \(sin^6x+cos^6x+3sin^2x\cdot cos^2x\)

\(=\left(sin^2x+cos^2x\right)^2-3\cdot sin^2x\cdot cos^2x\cdot\left(sin^2x+cos^2x\right)+3\cdot sin^2x\cdot cos^2x\)

=1

2: \(sin^4x-cos^4x\)

\(=\left(sin^2x+cos^2x\right)\left(sin^2x-cos^2x\right)\)

\(=1-2\cdot cos^2x\)

 

25 tháng 4 2023

Này là kiến thức lớp 10 mà bạn...

NV
8 tháng 5 2020

\(\frac{cos^2x\left(1+cot^2x\right)}{sin^2x\left(1+tan^2x\right)}=\frac{tan^2x\left(1+cot^2x\right)}{1+tan^2x}=\frac{tan^2x+tan^2x.cot^2x}{1+tan^2x}=\frac{1+tan^2x}{1+tan^2x}=1\)

Câu b ko rút gọn được, bạn coi lại đề

\(x^2sin^2a+y^2cos^2a-2xy.sina.cosa+x^2cos^2a+y^2sin^2a+2xy.sinx.cosa\)

\(=x^2\left(sin^2a+cos^2a\right)+y^2\left(cos^2a+sin^2a\right)=x^2+y^2\)

5 tháng 7 2018

5,\(cos^2\frac{\pi}{24}\left(1-cos^2\frac{\pi}{24}\right)=cos^2\frac{\pi}{24}\left(sin^2\frac{\pi}{24}+cos^2\frac{\pi}{24}-cos^2\frac{\pi}{24}\right)=cos^2\frac{\pi}{24}.sin^2\frac{\pi}{24}\)