\(\frac{X^2-1+\left|X+1\right|}{\left|X\right|\left(X-2\right)}=2\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 4 2020

ĐKXĐ: \(x\ne\left\{0;2\right\}\)

- Với \(x>0\Leftrightarrow x^2-1+x+1=2x\left(x-2\right)\)

\(\Leftrightarrow x^2+x=2x^2-4x\Leftrightarrow x^2-5x=0\Rightarrow x=5\)

- Với \(x< -1\Leftrightarrow x^2-1-x-1=-2x\left(x-2\right)\)

\(\Leftrightarrow x^2-x-2=-2x^2+4x\)

\(\Leftrightarrow3x^2-5x-2=0\Rightarrow\left[{}\begin{matrix}x=2\\x=-\frac{1}{3}\end{matrix}\right.\) (đều loại)

- Với \(-1< x< 0\Leftrightarrow x^2-1+x+1=-2x\left(x-2\right)\)

\(\Leftrightarrow x^2+x=-2x^2+4x\Leftrightarrow3x^2-3x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\) (loại)

Vậy pt có nghiệm duy nhất \(x=5\)

NV
26 tháng 10 2019

a/ \(\Leftrightarrow\left(x+2\right)^2-3\left|x+2\right|=0\)

\(\Leftrightarrow\left|x+2\right|^2-3\left|x+2\right|=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left|x+2\right|=0\\\left|x+2\right|=3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-2\\x+2=3\\x+2=-3\end{matrix}\right.\)

b/

\(\Leftrightarrow\left|x+2\right|^2-3\left|x+2\right|-4=0\)

\(\Leftrightarrow\left(\left|x+2\right|+1\right)\left(\left|x+2\right|-4\right)=0\)

\(\Leftrightarrow\left|x+2\right|-4=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=4\\x+2=-4\end{matrix}\right.\)

c/

\(\Leftrightarrow\left|x^2-3\right|^2-6\left|x^2-3\right|+5=0\)

\(\Leftrightarrow\left(\left|x^2-3\right|-1\right)\left(\left|x^2-3\right|-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left|x^2-3\right|=1\\\left|x^2-3\right|=5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-3=1\\x^2-3=-1\\x^2-3=5\\x^2-3=-5\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2=4\\x^2=2\\x^2=8\\x^2=-2\left(l\right)\end{matrix}\right.\)

NV
27 tháng 10 2019

d/ ĐKXĐ: ...

\(\Leftrightarrow\frac{\left|x-2\right|^2}{\left(x-1\right)^2}+\frac{2\left|x-4\right|}{x-1}=3\)

Đặt \(\frac{\left|x-2\right|}{x-1}=a\)

\(a^2+2a-3=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left|x-2\right|=x-1\\\left|x-2\right|=-3\left(x-1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left|x-2\right|=x-1\left(x\ge1\right)\\\left|x-2\right|=3-3x\left(x\le1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=x-1\left(vn\right)\\x-2=1-x\\x-2=3-3x\\x-2=3x-3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{3}{2}\\x=\frac{4}{5}\\x=\frac{1}{2}\end{matrix}\right.\)

e/ ĐKXĐ: ...

Đặt \(\left|\frac{2x-1}{x+2}\right|=a>0\)

\(a-\frac{2}{a}=1\Leftrightarrow a^2-a-2=0\)

\(\Rightarrow\left[{}\begin{matrix}a=-1\left(l\right)\\a=2\end{matrix}\right.\) \(\Rightarrow\left|\frac{2x-1}{x+2}\right|=2\)

\(\Rightarrow\left[{}\begin{matrix}2x-1=2\left(x+2\right)\\2x-1=-2\left(x+2\right)\end{matrix}\right.\)

NV
7 tháng 11 2019

a/

\(\Leftrightarrow\left[{}\begin{matrix}x^2-5x-4=x^2-4\\x^2-5x-4=4-x^2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-5x=0\\2x^2-5x-8=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{5\pm\sqrt{89}}{4}\\\end{matrix}\right.\)

b/ - Với \(x\ge3\) pt trở thành:

\(x-1+3\left(x-3\right)=6\Leftrightarrow4x=16\Rightarrow x=4\)

- Với \(x\le1\) pt trở thành:

\(1-x+3\left(3-x\right)=6\)

\(\Leftrightarrow x=1\)

- Với \(1< x< 3\) pt trở thành:

\(x-1+3\left(3-x\right)=6\)

\(\Leftrightarrow-2x=-2\Rightarrow x=1\) (loại)

NV
7 tháng 11 2019

c/ ĐKXĐ: \(x\ne\pm2\)

\(\left[{}\begin{matrix}\frac{x^2-6x-4}{x^2-4}=1\\\frac{x^2-6x-4}{x^2-4}=-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-6x-4=x^2-4\\x^2-6x-4=4-x^2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-6x=0\\2x^2-6x-8=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=4\end{matrix}\right.\)

d/ - Với \(x\ge2\) pt trở thành:

\(x-1-2\left(x-2\right)=x^2-x-3\)

\(\Leftrightarrow x^2=6\Rightarrow\left[{}\begin{matrix}x=\sqrt{6}\\x=-\sqrt{6}\left(l\right)\end{matrix}\right.\)

- Với \(x\le1\) pt trở thành:

\(1-x-2\left(2-x\right)=x^2-x-3\) làm tương tự

- Với \(1< x< 2\):

\(x-1-2\left(2-x\right)=x^2-x-3\)

29 tháng 12 2019

ĐKXĐ: \(\left[{}\begin{matrix}x< -1\\x>2\end{matrix}\right.\)

\(\frac{\left|2x-1\right|}{\left(x+1\right)\left(x-2\right)}>\frac{1}{2}\) (*)

+) Nếu \(x>2\) thì (*) \(\Leftrightarrow\frac{2x-1}{x^2-x-2}>\frac{1}{2}\)

\(\Leftrightarrow4x-2>x^2-x-2\)

\(\Leftrightarrow x^2-5x< 0\)

\(\Leftrightarrow x\left(x-5\right)< 0\)

\(\Leftrightarrow0< x< 5\)

\(\Leftrightarrow2< x< 5\)

+) Nếu \(x< -1\) thì (*) \(\Leftrightarrow\frac{1-2x}{x^2-x-2}>\frac{1}{2}\)

\(\Leftrightarrow2-4x>x^2-x-2\)

\(\Leftrightarrow x^2+3x-4< 0\)

\(\Leftrightarrow\left(x+4\right)\left(x-1\right)< 0\)

\(\Leftrightarrow-4< x< 1\)

\(\Leftrightarrow-4< x< -1\)

Vậy...

30 tháng 5 2016

PT cho tđuong với: (x^2 +9). (x^2 + 9x) = 22 (x-1)^2
Đặt t = [x^2 + 9 + x^2 + 9x]/2 hay t= x^2 + (9x + 9)/2. 
Khi đó: x^2 + 9 = t - 9(x-1)/2 
x^2 + 9x = t + 9(x-1)/2 
PT cho trở thành: [t - 9(x-1)/2]. [t + 9(x-1)/2] = 22(x-1)^2 
<=> t^2 -(81/4)(x-1)^2 = 22(x-1)^2 
<=> t^2 = (169/4)(x-1)^2 
<=> t = 13/2. (x-1) hoặc t= -13/2. (x-1) 
<=> 2t =13x -13 hoặc 2t =-13x + 13 
hay 2x^2 + 9x+ 9 =13x -13 hoặc 2x^2 + 9x +9 = -13x +13 
hay 2x^2 - 4x +22 =0 hoặc 2x^2 + 22x - 4 =0 

PT bậc hai thứ nhất vô nghiệm, PT bậc hai thứ hai cho ta hai nghiệm là: 
x= (-11 +căn(129))/2 , x= (-11 - căn(129))/2. 
 

30 tháng 5 2016

cách 2:đặt x-1=k

pt trở thành (k+1)(k2+2k+10)(k+10)=22k2

<=>(k2+2k+10)(k2+11k+10)=22k2

tự làm tiếp

NV
25 tháng 3 2019

Câu 1:

a/ \(x\ge-11\)

Đặt \(\sqrt{x+11}=a\ge0\Rightarrow11=a^2-x\), pt đã cho trở thành:

\(x^2+a=a^2-x\Leftrightarrow x^2-a^2+x+a=0\Leftrightarrow\left(x+a\right)\left(x-a+1\right)=0\)

TH1: \(x+a=0\Leftrightarrow x+\sqrt{x+11}=0\Leftrightarrow-x=\sqrt{x+11}\)

\(\Leftrightarrow\left[{}\begin{matrix}-x\ge0\\x^2=x+11\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\le0\\x^2-x-11=0\end{matrix}\right.\) \(\Rightarrow x=\frac{1-3\sqrt{5}}{2}\)

TH2: \(x-a+1=0\Leftrightarrow x+1=\sqrt{x+11}\) \(\Leftrightarrow\left\{{}\begin{matrix}x+1\ge0\\\left(x+1\right)^2=x+11\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x^2+x-10=0\end{matrix}\right.\) \(\Rightarrow x=\frac{-1+\sqrt{41}}{2}\)

b/ \(\sqrt{9+x}=x-9\Leftrightarrow\left\{{}\begin{matrix}x-9\ge0\\9+x=\left(x-9\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge9\\x^2-19x+72=0\end{matrix}\right.\) \(\Rightarrow x=\frac{19+\sqrt{73}}{2}\)

NV
25 tháng 3 2019

Câu 2:

a/

\(f\left(x\right)=\frac{\left(x-1\right)\left(x+1\right)\left(x-3\right)}{\left(x^2+1\right)\left(x-1\right)\left(x-4\right)}=\frac{\left(x+1\right)\left(x-3\right)}{\left(x^2+1\right)\left(x-4\right)}\)

Lập bảng xét dấu ta được:

\(f\left(x\right)>0\) khi \(\left[{}\begin{matrix}x< -1\\x>4\\1< x< 3\end{matrix}\right.\)

\(f\left(x\right)< 0\) khi \(\left[{}\begin{matrix}-1< x< 1\\3< x< 4\end{matrix}\right.\)

\(f\left(x\right)=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\)

\(f\left(x\right)\) ko xác định tại \(\left[{}\begin{matrix}x=1\\x=4\end{matrix}\right.\)

b/ \(h\left(x\right)=\frac{-x^2+3x-1}{\left(x^2-2x+3\right)\left(x+2\right)}\)

Lập bảng xét dấu ta được:

\(f\left(x\right)>0\) khi \(\left[{}\begin{matrix}x< -2\\\frac{3-\sqrt{5}}{2}< x< \frac{3+\sqrt{5}}{2}\end{matrix}\right.\)

\(f\left(x\right)< 0\) khi \(\left[{}\begin{matrix}-2< x< \frac{3-\sqrt{5}}{2}\\x>\frac{3+\sqrt{5}}{2}\end{matrix}\right.\)

\(f\left(x\right)=0\) tại \(x=\frac{3\pm\sqrt{5}}{2}\)

\(f\left(x\right)\) ko xác định tại \(x=-2\)

23 tháng 3 2020
https://i.imgur.com/SmYpZ8d.jpg
23 tháng 3 2020
https://i.imgur.com/D95iizc.jpg