K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 8 2023

Lời giải:

Đặt $(x-3)^2=a$. Khi đó pt đã cho tương đương với:

$(x^2-6x+9-9)^2+13(x-3)^2-77=0$

$\Leftrightarrow [(x-3)^2-9]^2+13(x-3)^2-77=0$

$\Leftrightarrow (a-9)^2+13a-77=0$

$\Leftrightarrow a^2-5a+4=0$

$\Leftrightarrow (a-1)(a-4)=0$

$\Leftrightarroe a=1$ hoặc $a=4$

Đến đây thì đơn giản rồi.

28 tháng 5 2017

câu a:

\(8x^2-6x+3-2x=\left(2x-1\right)\sqrt{8x^2-6x+3}\)

đặt \(t=\sqrt{8x^2-6x+3}\Leftrightarrow t^2=8x^2-6x+3\)phương trình trở thành

\(t^2-2x=\left(2x-1\right)t\Leftrightarrow t^2-\left(2x-1\right)t-2x=0\)

có \(\Delta=\left(2x-1\right)^2+8x=\left(2x+1\right)^2\Rightarrow\orbr{\begin{cases}t=-1\\t=2x\end{cases}}\)

  1. \(t=-1\Rightarrow8x^2-6x+3=1\Leftrightarrow8x^2-6x+2=0VN\)
  2. \(t=2x\Rightarrow8x^2-6x+3=4x^2\Leftrightarrow4x^2-6x+3=0VN\)
28 tháng 5 2017

Câu b:

Đặt \(t=\sqrt{x^2+1}\Leftrightarrow t^2=x^2+1\left(t>0\right)\)

PT\(\Leftrightarrow t^2-\left(x+3\right)t+3x=0\)

có :\(\Delta=\left(x+3\right)^2-4.3x=\left(x-3\right)^2\Rightarrow\orbr{\begin{cases}t=3\\t=x\end{cases}}\)

  1. \(t=3\Rightarrow9=x^2+1\Leftrightarrow x^2=8\Leftrightarrow\orbr{\begin{cases}x=2\sqrt{2}\\x=-2\sqrt{2}\end{cases}}\)
  2. \(t=x\Leftrightarrow x^2=x^2+1VN\)
NV
22 tháng 8 2020

Nhận thấy \(x=0\) ko phải nghiệm, chia 2 vế cho \(x^2\)

\(x^2-3x+9-\frac{3}{x}+\frac{1}{x^2}=0\)

\(\Leftrightarrow x^2+\frac{1}{x^2}-3\left(x+\frac{1}{x}\right)+9=0\)

Đặt \(x+\frac{1}{x}=t\Rightarrow x^2+\frac{1}{x^2}=t^2-2\)

pt trở thành: \(t^2-2-3t+9=0\)

\(\Leftrightarrow t^2-3t+7=0\) (vô nghiệm)

Vậy pt đã cho vô nghiệm

=>x^4+2x^2+1-4x^2-144x-1296=0

=>(x^2+1)^2-(2x+36)^2=0

=>(x^2+1-2x-36)(x^2+1+2x+36)=0

=>x^2-2x-35=0

=>(x-7)(x+5)=0

=>x=7 hoặc x=-5

NV
14 tháng 3 2020

a/ Đặt \(x^2+2x+1=\left(x+1\right)^2=t\ge0\)

\(\Rightarrow\left(t+2\right)t=3\Leftrightarrow t^2+2t-3=0\Rightarrow\left[{}\begin{matrix}t=1\\t=-3\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\left(x+1\right)^2=1\Rightarrow\left[{}\begin{matrix}x+1=1\\x+1=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

b/ \(\Leftrightarrow\left(x^2-x\right)\left(x^2-x+1\right)-6=0\)

Đặt \(x^2-x=t\Rightarrow t\left(t+1\right)-6=0\Rightarrow t^2+t-6=0\)

\(\Rightarrow\left[{}\begin{matrix}t=-3\\t=2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2-x=-3\\x^2-x=2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x^2-x+3=0\left(vn\right)\\x^2-x-2=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\)

8 tháng 7 2016

2/ (x+ x + 1) (x2+ x + 2) = 12

đặt x2 + x = t

thay vào đc: 

(t + 1) (t + 2) = 12

<=> t2 + 3t + 2 = 12

<=> t2 + 3t - 10 = 0

<=> t2 - 2t + 5t - 10 = 0

<=> t (t - 2) + 5 (t - 2) = 0

<=> (t + 5) (t - 2) = 0

=> {

t=−5

t=2

thay t đc:

*) x2 + x = -5  => x loại

*) x2 + x = 2 = x2 + x - 2 = x2 - 1 + x - 1 = (x - 1) (x + 1) + (x - 1) = (x - 1) (x + 2) 

=> x = 1 hoặc x = - 2

S = {-2 ; 1}

3/ (x- 6x + 4)- 15(x- 6x + 10) = 1

đặt x- 6x + 4 = t

có: t- 15(t + 6) = 1

<=> t2 - 15t - 91 = 0

8 tháng 7 2016

Câu 2 đặt ẩn phụ là x^2+x+2= a là đc

Câu 3 đặt ẩnphụ là x^2-6x+4= b là đc

1 tháng 2 2016

a)(x-2)(x+2)(x^2-10)=72

<=>(x^2-4)(x^2-10)=72

<=>x^4-14x^2+40=72

<=>x^4-14x^2-32=0

<=>x^4-16x^2+2x^2-32=0

<=>x^2(x^2-16)+2(x^2-16)=0

<=>(x^2-16)(x^2+2)=0

<=>(x-4)(x+4)(x^2+2)=0

<=>x-4=0 hoac x+4=0 (vi x^2+2>0 voi moi x)

<=>x=4,x=-4

S={4,-4}

 

 

31 tháng 1 2016

a)(x-2))x+2)(x^2-10)=72

=(x^2-4)(x^2-10)=72

Đặt x^2-7 là t

Phương trình trở thành (t+3)(t-3)=72

                                    t^2-9=72

                                    t^2=81

                         suy ra t= cộng trừ 9

*t=9

x^2-7=9

x^2=16

suy ra x=cộng trừ 4

*t=-9

x^2-7=-9

x^2=-2

suy ra x không xác định

vậy S={cộng trừ 4}

1 tháng 9 2023

Để giải phương trình này bằng đặt ẩn phụ, chúng ta sẽ đặt ẩn phụ là một biến mới, ví dụ như u. Sau đó, ta thực hiện phép đặt ẩn phụ bằng cách thay thế x = u - 11. Bằng cách này, ta có thể chuyển phương trình ban đầu thành một phương trình bậc nhất với ẩn phụ u.

5 tháng 7 2016

1.

Đặt \(x^2-5x=a\Rightarrow a^2=\left(x^2-5x\right)^2\)

Thay vào pt:

\(\Rightarrow a^2+10a+24=0\)

\(\Leftrightarrow a^2+6a+4a+24=0\)

\(\Leftrightarrow a\left(a+6\right)+4\left(a+6\right)=0\)

\(\Leftrightarrow\left(a+6\right)\left(a+4\right)=0\)

\(\Leftrightarrow\left(x^2-5x+6\right)\left(x^2-5x+4\right)=0\)

\(\Leftrightarrow\left(x^2-3x-2x+6\right)\left(x^2-4x-x+4\right)=0\)

\(\Leftrightarrow\left[x\left(x-3\right)-2\left(x-3\right)\right]\left[x\left(x-4\right)-\left(x-4\right)\right]=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-2\right)\left(x-4\right)\left(x-1\right)=0\)

\(\Rightarrow x-3=0,x-2=0,x-4=0,x-1=0\)

\(\Rightarrow x=3,x=2,x=4,x=1\)

T I C K mình sẽ giải típ cho cảm ơn

5 tháng 7 2016

típ nha