Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu a:
\(8x^2-6x+3-2x=\left(2x-1\right)\sqrt{8x^2-6x+3}\)
đặt \(t=\sqrt{8x^2-6x+3}\Leftrightarrow t^2=8x^2-6x+3\)phương trình trở thành
\(t^2-2x=\left(2x-1\right)t\Leftrightarrow t^2-\left(2x-1\right)t-2x=0\)
có \(\Delta=\left(2x-1\right)^2+8x=\left(2x+1\right)^2\Rightarrow\orbr{\begin{cases}t=-1\\t=2x\end{cases}}\)
- \(t=-1\Rightarrow8x^2-6x+3=1\Leftrightarrow8x^2-6x+2=0VN\)
- \(t=2x\Rightarrow8x^2-6x+3=4x^2\Leftrightarrow4x^2-6x+3=0VN\)
Câu b:
Đặt \(t=\sqrt{x^2+1}\Leftrightarrow t^2=x^2+1\left(t>0\right)\)
PT\(\Leftrightarrow t^2-\left(x+3\right)t+3x=0\)
có :\(\Delta=\left(x+3\right)^2-4.3x=\left(x-3\right)^2\Rightarrow\orbr{\begin{cases}t=3\\t=x\end{cases}}\)
- \(t=3\Rightarrow9=x^2+1\Leftrightarrow x^2=8\Leftrightarrow\orbr{\begin{cases}x=2\sqrt{2}\\x=-2\sqrt{2}\end{cases}}\)
- \(t=x\Leftrightarrow x^2=x^2+1VN\)
Nhận thấy \(x=0\) ko phải nghiệm, chia 2 vế cho \(x^2\)
\(x^2-3x+9-\frac{3}{x}+\frac{1}{x^2}=0\)
\(\Leftrightarrow x^2+\frac{1}{x^2}-3\left(x+\frac{1}{x}\right)+9=0\)
Đặt \(x+\frac{1}{x}=t\Rightarrow x^2+\frac{1}{x^2}=t^2-2\)
pt trở thành: \(t^2-2-3t+9=0\)
\(\Leftrightarrow t^2-3t+7=0\) (vô nghiệm)
Vậy pt đã cho vô nghiệm
=>x^4+2x^2+1-4x^2-144x-1296=0
=>(x^2+1)^2-(2x+36)^2=0
=>(x^2+1-2x-36)(x^2+1+2x+36)=0
=>x^2-2x-35=0
=>(x-7)(x+5)=0
=>x=7 hoặc x=-5
a/ Đặt \(x^2+2x+1=\left(x+1\right)^2=t\ge0\)
\(\Rightarrow\left(t+2\right)t=3\Leftrightarrow t^2+2t-3=0\Rightarrow\left[{}\begin{matrix}t=1\\t=-3\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\left(x+1\right)^2=1\Rightarrow\left[{}\begin{matrix}x+1=1\\x+1=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
b/ \(\Leftrightarrow\left(x^2-x\right)\left(x^2-x+1\right)-6=0\)
Đặt \(x^2-x=t\Rightarrow t\left(t+1\right)-6=0\Rightarrow t^2+t-6=0\)
\(\Rightarrow\left[{}\begin{matrix}t=-3\\t=2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2-x=-3\\x^2-x=2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2-x+3=0\left(vn\right)\\x^2-x-2=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\)
2/ (x2 + x + 1) (x2+ x + 2) = 12
đặt x2 + x = t
thay vào đc:
(t + 1) (t + 2) = 12
<=> t2 + 3t + 2 = 12
<=> t2 + 3t - 10 = 0
<=> t2 - 2t + 5t - 10 = 0
<=> t (t - 2) + 5 (t - 2) = 0
<=> (t + 5) (t - 2) = 0
=> {
t=−5 |
t=2 |
thay t đc:
*) x2 + x = -5 => x loại
*) x2 + x = 2 = x2 + x - 2 = x2 - 1 + x - 1 = (x - 1) (x + 1) + (x - 1) = (x - 1) (x + 2)
=> x = 1 hoặc x = - 2
S = {-2 ; 1}
3/ (x2 - 6x + 4)2 - 15(x2 - 6x + 10) = 1
đặt x2 - 6x + 4 = t
có: t2 - 15(t + 6) = 1
<=> t2 - 15t - 91 = 0
Câu 2 đặt ẩn phụ là x^2+x+2= a là đc
Câu 3 đặt ẩnphụ là x^2-6x+4= b là đc
a)(x-2)(x+2)(x^2-10)=72
<=>(x^2-4)(x^2-10)=72
<=>x^4-14x^2+40=72
<=>x^4-14x^2-32=0
<=>x^4-16x^2+2x^2-32=0
<=>x^2(x^2-16)+2(x^2-16)=0
<=>(x^2-16)(x^2+2)=0
<=>(x-4)(x+4)(x^2+2)=0
<=>x-4=0 hoac x+4=0 (vi x^2+2>0 voi moi x)
<=>x=4,x=-4
S={4,-4}
a)(x-2))x+2)(x^2-10)=72
=(x^2-4)(x^2-10)=72
Đặt x^2-7 là t
Phương trình trở thành (t+3)(t-3)=72
t^2-9=72
t^2=81
suy ra t= cộng trừ 9
*t=9
x^2-7=9
x^2=16
suy ra x=cộng trừ 4
*t=-9
x^2-7=-9
x^2=-2
suy ra x không xác định
vậy S={cộng trừ 4}
1.
Đặt \(x^2-5x=a\Rightarrow a^2=\left(x^2-5x\right)^2\)
Thay vào pt:
\(\Rightarrow a^2+10a+24=0\)
\(\Leftrightarrow a^2+6a+4a+24=0\)
\(\Leftrightarrow a\left(a+6\right)+4\left(a+6\right)=0\)
\(\Leftrightarrow\left(a+6\right)\left(a+4\right)=0\)
\(\Leftrightarrow\left(x^2-5x+6\right)\left(x^2-5x+4\right)=0\)
\(\Leftrightarrow\left(x^2-3x-2x+6\right)\left(x^2-4x-x+4\right)=0\)
\(\Leftrightarrow\left[x\left(x-3\right)-2\left(x-3\right)\right]\left[x\left(x-4\right)-\left(x-4\right)\right]=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-2\right)\left(x-4\right)\left(x-1\right)=0\)
\(\Rightarrow x-3=0,x-2=0,x-4=0,x-1=0\)
\(\Rightarrow x=3,x=2,x=4,x=1\)
T I C K mình sẽ giải típ cho cảm ơn
Lời giải:
Đặt $(x-3)^2=a$. Khi đó pt đã cho tương đương với:
$(x^2-6x+9-9)^2+13(x-3)^2-77=0$
$\Leftrightarrow [(x-3)^2-9]^2+13(x-3)^2-77=0$
$\Leftrightarrow (a-9)^2+13a-77=0$
$\Leftrightarrow a^2-5a+4=0$
$\Leftrightarrow (a-1)(a-4)=0$
$\Leftrightarroe a=1$ hoặc $a=4$
Đến đây thì đơn giản rồi.