Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
a,ta có:
\(\left(y+1\right)^4=y^4+4y^3+6y^2+4y+1\ge y^4+y^3+y^2+y\ge y^4\)
=>y=0=>x=0;-1
b,
b,\(\left(x^2+1\right)^3=x^6+3x^4+3x^2+1\ge x^6+3x^2+1>\left(x^2\right)^3\)
=>x=0=>y=-1;1
a)\(3^x-y^3=1\)
- Nếu x<0 suy ra y không nguyên
- Nếu x=0 => y=0
- Nếu x=1 =>y không nguyên
- Nếu x=2 =>y=2
- Nếu x>2 \(pt\Rightarrow3^x=y^3+1\left(x>2\right)\Rightarrow y^3>9\)
Ta suy ra \(y^3+1⋮9\Rightarrow y^3:9\) dư -1
\(\Rightarrow y=9k+2\) hoặc \(y=9k+5\) hoặc \(y=9k+8\) (k nguyên dương) (1)
Mặt khác ta cũng có \(y^3+1⋮3\) nên \(y=3m+2\) (m nguyên dương)
Từ (1) và (2) suy ra vô nghiệm
Vậy pt có 2 nghiệm nguyên là (0;0) và (2;2)
b)Xét .... ta dc x=y=0 hoặc x=1 và y=2
c)Xét.... x=y=0 hoặc x=0 và y=-1 hoặc x=-1 và y=0 hoặc x=y=-1
1) Vì vai trò của x;y;z;t như nhau nên giả sử x≤y≤z≤tx≤y≤z≤t
Suy ra x+y+z+t≤4tx+y+z+t≤4t
↔xyzt≤4t↔xyz≤4↔xyzt≤4t↔xyz≤4
Do x;y;z;t nguyên dương nên 0<xyz≤4→xyz=1;2;3;40<xyz≤4→xyz=1;2;3;4
Xét 4 trường hợp sau:
• TH1TH1 : xyz=1xyz=1
→x=y=z=1→x=y=z=1
Thay vào (1) có : 3+t=t3+t=t (vô lí)
TH1TH1 không xảy ra: loại
• TH2:xyz=2TH2:xyz=2
Do x≤y≤z→x=y=1;z=2x≤y≤z→x=y=1;z=2
Thay vào (1) có : 4+t=2t→t=44+t=2t→t=4 (thỏa mãn)
(x;y;z;t) = (1;1;2;4)
• TH3:xyz=3TH3:xyz=3
→x=y=1;z=3→x=y=1;z=3
Thay vào (1) có : 5+t=3t→2t=55+t=3t→2t=5 (vô lí vì 5 k chia hết cho 2)
TH3TH3 k xảy ra : loại
• TH4TH4 : xyz = 4
+) x = 1; y = z = 2
→5+t=4t→5=3t→→5+t=4t→5=3t→ t không là số nguyên
+) x=y=1;z=4x=y=1;z=4
Thay vào (1) tìm được t = 2 (không thỏa mãn do z≤tz≤t(gt) mà z = 4 > 2 = t)
TH4TH4 không xảy ra: loại
Vậy (x;y;z;t) = (1;1;2;4) và các hoán vị
2)xyz = 9 + x + y + z
<=> 1 = 1/yz + 1/xz + 1/xy + 9/xyz
giả sử: x ≥ y ≥ z ≥ 1, ta có:
1 = 1/yz + 1/xz + 1/xy + 9/xyz ≤ 1/z^2 + 1/z^2 + 1/z^2 + 9/z^2 = 12/z^2
=> z^2 ≤ 12 => z = 1, 2 , 3
*z = 1:
1=1/y + 1/x + 1/xy ≤ 1/y + 1/y + 1/y = 3/y
=> y ≤ 3 => y = 1,2,3
y =1 => x= 11 + x (vô nghiệm)
y = 2 => 2x = 12 + x => x = 12 trường hợp nầy nghiệm (12,2,1)
y = 3 => 3x = 13 + x ( không có ngiệm x nguyên)
* z = 2
1 = 1/2y + 1/2x + 1/xy + 1/2xy = 1/2y + 1/2x + 3/2xy ≤ 1/2(1/y + 1/y + 3/y) = .5/2y
=> y ≤ 5/2 => y = 2
=> 4x = 13 + x (không có nghiệm x nguyên)
* z =3:
1 = 1/3y + 1/3x + 1/xy + 3/xy = 1/3y + 1/3x + 4/xy ≤ 1/3(1/y +1/y + 12/y) = 14/3y
=> y ≤ 14/3 => y = 3, 4
y = 3 => 9x = 15 + x (không có nghiệm x nguyên)
y = 4 => 12x = 16 + x (không có nghiệm x nguyên)
Vậy pt có nghiệm là (12,2,1) và các hoán vị của nó.
5)
Chuyen sang ve trai cac hang tu chua x,y,z:
(x^2 - xy + y^2/4) + 3(y^2/4 - 2.y/2 + 1) + (z^2-2z+1) -3-1 <= -4
<=> (x-y/2)^2 + 3.(y/2 -1)^2 + (z-1)^2 <= 0
Binh phuong cua 1 so thi ko the am nen suy ra fai xay ra dong thoi:
x-y/2 =0 ; y/2 -1 =0 vaf z-1 =0
giai ra duoc x= 1; y=2; z=1 thoa man
Dùng định lý kẹp nhé
có 2x2 + 3x + 1 = (x + 3/4)2 + 7/16 > 0
<=> x3 + 2x2 + 3x + 1 > x3 (1)
có x2 >= 0
<=> x3 + 3x2 + 3x + 1 >= x3 + 2x2 + 3x + 1 (2)
Từ (1) và (2) => x3 + 2x2 + 3x + 1 = x3 + 3x2 + 3x + 1
<=> x = 0
Thay vào biểu thức được y = -3
Vậy nghiệm nguyên của phương trình là (x;y) = (0;-3)
Cái phần "
có 2x2 + 3x + 1 = (x + 3/4)2 + 7/16 > 0
<=> x3 + 2x2 + 3x + 1 > x3 (1)
" bị sai
đổi thành 5x2+2>0 <=> x3 + 2x2 + 3x + 1 > (x-1)3
thử thêm với trường hợp x3 + 2x2 + 3x + 1 = x3 được x = -1 => y = -1
Vậy nghiêm nguyên của phương trình là (x;y) = (0;-3) ; (-1;-1)