Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x^2+y\right)\left(x+y^2\right)=\left(x+y\right)^3\)
\(\Leftrightarrow x^3+x^2y^2+xy+y^3=x^3+y^3+3xy\left(x+y\right)\)
\(\Leftrightarrow xy\left(xy+1\right)=3xy\left(x+y\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}xy=0\\xy+1=3\left(x+y\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\y=0\\xy-3x-3y+1=0\end{matrix}\right.\)
TH1: \(x=0\) thì thay vào pt đề bài, suy ra điều luôn đúng với mọi số nguyên \(x\). Hơn nữa do vai trò \(x,y\) như nhau nên tương tự với trường hợp \(y=0\)
TH2: \(xy-3x-3y+1=0\)
\(\Leftrightarrow x\left(y-3\right)-3\left(y-3\right)=8\)
\(\Leftrightarrow\left(x-3\right)\left(y-3\right)=8\)
Từ đó ta có bảng:
\(x-3\) | 1 | 8 | 2 | 4 | -1 | -8 | -2 | -4 |
\(y-3\) | 8 | 1 | 4 | 2 | -8 | -1 | -4 | -2 |
\(x\) | 4 | 11 | 5 | 7 | 2 | -5 | 1 | -1 |
\(y\) | 11 | 4 | 7 | 5 | -5 | 2 | -1 | 1 |
Như vậy trong trường hợp này, ta tìm ra được các nghiệm \(\left(4;11\right);\left(11;4\right);\left(5;7\right);\left(7;5\right);\left(2;-5\right);\left(-5;2\right);\left(1;-1\right);\left(-1;1\right)\)
Tóm lại, ta tìm được các nghiệm nguyên sau của pt đã cho:
\(\left(4;11\right);\left(11;4\right);\left(5;7\right);\left(7;5\right);\left(2;-5\right);\left(-5;2\right);\left(1;-1\right);\left(-1;1\right)\); \(\left(0;y\right),\forall y\inℤ\) và \(\left(x;0\right),\forall x\inℤ\)
\(PT\Leftrightarrow y\left(x^2-2x-1\right)=x^2+2x-1\).
Từ đó \(x^2-2x-1\vdots x^2+2x-1\)
\(\Leftrightarrow4x⋮x^2+2x-1\) (1)
\(\Rightarrow4\left(x^2+2x-1\right)-4x^2⋮x^2+2x-1\)
\(\Leftrightarrow8x-4⋮x^2+2x-1\) (2)
Từ (1), (2) suy ra \(8⋮x^2+2x-1\).
Đến đây bạn xét TH.
(Đưa về phương trình bậc 2 ẩn yy, tham số xx)
Pt ⇔2y2+(3x−1)y+x2−2x−6=0⇔2y2+(3x−1)y+x2−2x−6=0
Δ=(3x−1)2−4.2(x2−2x−6)=x2+10x+49=(x+5)2+24>0∀xΔ=(3x−1)2−4.2(x2−2x−6)=x2+10x+49=(x+5)2+24>0∀x
Để phương trình đã cho có nghiệm nguyên thì Δ=(x+5)2+24Δ=(x+5)2+24 phải là một số chính phương.
Đặt (x+5)2+24=k2(k∈N∗)⇔(x+5)2−k2=−24⇔(x+5−k)(x+5+k)=−24=−12.2=−6.4=−4.6=−2.12(x+5)2+24=k2(k∈N∗)⇔(x+5)2−k2=−24⇔(x+5−k)(x+5+k)=−24=−12.2=−6.4=−4.6=−2.12(tích của 2 số nguyên có tổng chẵn, (số bé .số lớn)
Lập bảng xét giá trị ta được các giá trị của xx và yy:
x=−10→y=6tm;x=−10→y=6tm;
x=−6→y=6tm;x=−6→y=6tm;
x=−4→y=4,5ktm;x=−4→y=4,5ktm;
x=0→y=2tmx=0→y=2tm
Vậy...
Lời giải:
$x(x^2+x+1)=4y(y+1)$
$\Leftrightarrow x(x^2+x+1)+1=4y(y+1)+1$
$\Leftrightarrow (x^2+1)(x+1)=(2y+1)^2$
Vì $(x^2+1)-(x+1)=x^2-x=x(x-1)\vdots 2$ nên $x^2+1, x+1$ cùng tính chẵn lẻ. Mà tích của chúng là $(2y+1)^2$ lẻ nên $x^2+1, x+1$ cùng lẻ.
Gọi $d=ƯCLN(x^2+1, x+1)$
$\Rightarrow x^2+1\vdots d; x+1\vdots d$
$\Rightarrow x(x+1)-(x^2+1)\vdots d$
$\Rightarrow x-1\vdots d$
$\Rightarrow (x+1)-(x-1)\vdots d\Rightarrow 2\vdots d$
$\Rightarrow d=1$ hoặc $d=2$
Nếu $d=2$ thì $x^2+1\vdots 2$ (loại do $x^2+1$ lẻ)
$\Rightarrow d=1$
Vậy $(x^2+1, x+1)=1$. Mà tích của chúng là scp nên bản thân mỗi số $x^2+1, x+1$ là scp.
Đặt $x^2+1=a^2, x+1=b^2$ với $a,b\in\mathbb{N}$
$\Rightarrow (b^2-1)^2+1=a^2$
$\Rightarrow 1=(a^2-b^2+1)(a^2+b^2-1)$
$\Rightarrow a^2-b^2+1=1=a^2+b^2-1=1$
$\Rightarrow a=b=1$
$\Rightarrow x=0\Rightarrow y=0$ hoặc $y=-1$
\(pt< =>\left(x-y\right)^2+xy=\left(x-y\right)\left(xy+2\right)+9\)
\(< =>\left(y-x\right)\left(xy+2+y-x\right)+xy+2+y-x-\left(y-x\right)=11\)
\(< =>\left(y-x+1\right)\left(xy+2+y-x\right)-\left(y-x+1\right)=10\)
\(< =>\left(x-y+1\right)\left(x-y-1-xy\right)=10\)
đến đây giải hơi bị khổ =))
\(y\left(x-2\right)=x^2+3\)
\(\Leftrightarrow\)\(y\left(x-2\right)-x^2=3\)
\(\Leftrightarrow\)\(y\left(x-2\right)-x^2+4=7\)
\(\Leftrightarrow\)\(y\left(x-2\right)-\left(x-2\right)\left(x+2\right)=7\)
\(\Leftrightarrow\)\(\left(x-2\right)\left(y-x-2\right)=7\)\(=1.7=\left(-1\right).\left(-7\right)\)
Do \(x,y\)nguyên nên \(x-2\)và \(y-x-2\)nguyên
Ta lập bảng sau:
\(x-2\) | \(1\) | \(7\) | \(-1\) | \(-7\) |
\(x\) | \(3\) | \(9\) | \(1\) | \(-5\) |
\(y-x-2\) | \(7\) | \(1\) | \(-7\) | \(-1\) |
\(y\) | \(12\) | \(12\) | \(-4\) | \(-4\) |
Vậy....
p/s: phần lập bảng bn ktra lại nha, (sợ tính sai)
Xét x=3 thì pt vô nghiệm
xét x khác 3, ta có \(y=\frac{x^2+3}{x-2}=\frac{x^2-4+7}{x-2}=x+2+\frac{7}{x-2}\)
Mà x,y là số nguyên => \(\frac{7}{x-2}\) là số nguyên => x-2 thuộc ước của 7, đến đây tự làm nhá
x^3+x^2+x+1=y^3 => y^3 - x^3 = x^2 + x + 1 = (x + 1/2)^2 + 3/4 > 0
=> y^3 > x^3 (1)
mặt khác:
5x^2 +11x+5 =5(x+11/10)^2 +19/20 > 0
y^3 = x^3 + x^2 + x +1 < x^3 + x^2 + x +1 + 5x^2 + 11x +5 = x^3 +6x^2 +12x +8 = (x + 2)^3 (2)
(1) và (2) => y^3 = (x + 1)^3 => y = x +1
=> x^3+x^2 +x +1 = x^3 +3x^2 +3x +1 = y^3
<=> 2x^2 + 2x =0
<=> 2x(x+1)=0
=> x = 0 và y=1
hoặc x = -1 và y = 0
1 số chính phương chia 4 dư 0 hoặc 1
Mà vế trái chia 4 có số dư lớn nhất là 2
Vế phải chia 4 dư 3
Suy ra phương trình vô nghiệm