Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{2x+1}-\sqrt{3x}=x-1\)
ĐK: \(x\ge0\)
\(\sqrt{2x+1}-\sqrt{3x}=3x-\left(2x+1\right)\)
\(\Leftrightarrow\sqrt{2x+1}-\sqrt{3x}=\left(\sqrt{3x}-\sqrt{2x+1}\right)\left(\sqrt{3x}+\sqrt{2x+1}\right)\)
\(\Leftrightarrow\left(\sqrt{2x+1}-\sqrt{3x}\right)\left(1+\sqrt{3x}+\sqrt{2x+1}\right)=0\)
\(\Leftrightarrow\sqrt{2x+1}=\sqrt{3x}\Rightarrow x=1\left(tm\right)\)
Tìm nghiệm nguyên của pt: $x^{3}-y^{3}-2y^{2}-3y-1=0$ - Số học - Diễn đàn Toán học
Ta có:
\(x^3-y^3-y^2-3y-1=0\)
\(\Leftrightarrow y^3+2y^2+3y+1=x^3\)
Dễ dàng thấy:
\(\left(y-1\right)^3< y^3+2y^2+3y+1\le\left(y+1\right)^3\)
\(\Leftrightarrow y^3+2y^2+3y+1=\left[\left(y^3\right);\left(y+1\right)^3\right]\)
Làm tiếp nhé
Lời giải:
PT \(\Leftrightarrow 2x^2+x(3-5y)+(3y^2-2y-3)=0(*)\)
Coi đây là pt bậc $2$ ẩn $x$. Để pt có nghiệm nguyên thì:
\(\Delta=(3-5y)^2-8(3y^2-2y-3)=t^2\) (\(t\in\mathbb{N}\) )
\(\Leftrightarrow y^2-14y+33=t^2\)
\(\Leftrightarrow (y-7)^2-16=t^2\)
\(\Leftrightarrow 16=(y-7-t)(y-7+t)\)
Lập bảng xét TH (nhớ rằng $y-7-t$ và $y-7+t$ có cùng tính chẵn lẻ và \(y-7-t\leq y-7+t\) với mọi $t\in\mathbb{N}$
để giảm bớt TH cần phải xét)
Khi đó, ta dễ dàng tìm được: \(y\in\left\{2;3;11;12\right\}\)
Thay từng giá trị của $y$ ở trên vào PT $(*)$ ta tìm được $x$:
\(y=2\Rightarrow x=1\)
\(y=3\Rightarrow x=3\)
\(y=11\Rightarrow x=13\)
\(y=12\Rightarrow x=15\)
a,ta có:
\(\left(y+1\right)^4=y^4+4y^3+6y^2+4y+1\ge y^4+y^3+y^2+y\ge y^4\)
=>y=0=>x=0;-1
b,
b,\(\left(x^2+1\right)^3=x^6+3x^4+3x^2+1\ge x^6+3x^2+1>\left(x^2\right)^3\)
=>x=0=>y=-1;1
Bài 1 : dùng ĐK chặn x;y
Bài 2: pt trùng phương đặt x8 = y rồi dùng Vi-ét cho pt 1 rồi Vi-ét cho pt 2
Bài 3: rút x;y theo m rồi quy P về pt chỉ có ẩn m -> tổng bình phương cộng vs 1 hằng số
Bài 4: Đi ngủ .VV
Cách chặn x ; y của a khó quá :( nghĩ mãi ko ra , đành làm cách khác
\(1,ĐKXĐ:x\ge-y\)
Từ hệ \(\Rightarrow\hept{\begin{cases}\sqrt{x^2+x+2}=y+\sqrt{x+y}\\x+1=y+\sqrt{x+y}\end{cases}}\)
\(\Rightarrow\sqrt{x^2+x+2}=x+1\)
\(\Leftrightarrow\hept{\begin{cases}x\ge-1\\x^2+x+2=x^2+2x+1\end{cases}}\)
\(\Leftrightarrow x=1\)
Thế vào hệ có \(\sqrt{y+1}=2-y\)
\(\Leftrightarrow\hept{\begin{cases}-1\le y\le2\\y+1=y^2-4y+4\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-1\le y\le2\\y^2-5y+3=0\end{cases}}\)
\(\Leftrightarrow y=\frac{5-\sqrt{13}}{2}\)
Vậy hệ có nghiệm \(\hept{\begin{cases}x=1\\y=\frac{5-\sqrt{13}}{2}\end{cases}}\)
Ta có \(4xy^2-3x-3y^2=1\Leftrightarrow y^2\left(4x-3\right)=3x+1\Leftrightarrow y^2=\frac{3x+1}{4x-3}\inℤ\left(do4x-3\ne0\right)\)
\(\Rightarrow3x+1⋮4x-3\Rightarrow4\left(3x+1\right)⋮4x-3\Leftrightarrow3\left(4x-3\right)+13⋮4x-3\Leftrightarrow13⋮4x-3\)
\(\Rightarrow4x-3\inƯ\left(13\right)=\left\{\pm1,\pm13\right\}\Leftrightarrow4x\in\left\{-10,2,4,16\right\}\Rightarrow x\in\left\{1,4\right\}\)(do x thuộc Z)
Với \(x=1\Rightarrow y^2=4\Rightarrow y=\pm2\left(tm\right)\)
Với \(x=4\Rightarrow y^2=1\Rightarrow y=\pm1\left(tm\right)\)
4xy²−3x−3y²=14xy²−3x−3y²=1
⇔ y²(4x−3)−0,75(4x−3)=3,25y²(4x−3)−0,75(4x−3)=3,25
⇔ (4x−3)(y²−0,75)=3,25(4x−3)(y²−0,75)=3,25
⇔ (4x−3).(4y²−3)=13=1.13=13.1=(−1).(−13)=(−13).(−1)(4x−3).(4y²−3)=13=1.13=13.1=(−1).(−13)=(−13).(−1)
Ta có bảng giá trị
4x-3 | 1 | 13 | -1 | -13 |
x | 1 | 4 | / | / |
4y²-3 | 13 | 1 | -13 | -1 |
y | ±2 | ±1 | / | / |
Vậy ...