Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)\left(\sqrt{x}+6\right)=168x\\ \Leftrightarrow\left(x+7\sqrt{x}+6\right)\left(x+5\sqrt{x}+6\right)-168x=0\\ \Leftrightarrow\left(x+6\sqrt{x}+6\right)^2-\left(13\sqrt{x}\right)^2=0\\ \left(x-7\sqrt{x}+6\right)\left(x+19\sqrt{x}+6\right)=0 \\ \left(\sqrt{x}-1\right)\left(\sqrt{x}-6\right)=0\)
a,\(\left(2x-3\right)^2=\left(x+1\right)^2\)
\(\Leftrightarrow\left(2x-3\right)^2-\left(x+1\right)^2=0\)
\(\Leftrightarrow\left(2x-3+x+1\right)\left(2x-3-x-1\right)=0\)
\(\Leftrightarrow\left(3x-2\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-2=0\\x-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=4\end{matrix}\right.\)
Vậy...
b,\(\left(x+2\right)\left(5-3x\right)=x^2+4x+4\)
\(\Leftrightarrow\left(x+2\right)\left(5-3x\right)-\left(x+2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(-4x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\-4x+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{3}{4}\end{matrix}\right.\)
Vậy...
T sợ chỉ dám liên hợp thôi, nhường cách bình phương cho 1 ng` chăm chỉ :(
\(pt\Leftrightarrow6x+3x\sqrt{9x^2+3}+4x+2+\left(4x+2\right)\sqrt{x^2+x+1}=0\)
\(\Leftrightarrow2\left(5x+1\right)+\left(3x\sqrt{9x^2+3}+\dfrac{6\sqrt{21}}{25}\right)+\left(\left(4x+2\right)\sqrt{x^2+x+1}-\dfrac{6\sqrt{21}}{25}\right)=0\)
\(\Leftrightarrow2\left(5x+1\right)+\dfrac{\dfrac{27}{625}\left(5x-1\right)\left(5x+1\right)\left(75x^2+28\right)}{3x\sqrt{9x^2+3}-\dfrac{6\sqrt{21}}{25}}+\dfrac{\dfrac{4}{625}\left(5x+1\right)\left(5x+4\right)\left(100x^2+100x+109\right)}{\left(4x+2\right)\sqrt{x^2+x+1}+\dfrac{6\sqrt{21}}{25}}=0\)
\(\Leftrightarrow\left(5x+1\right)\left(2+\dfrac{\dfrac{27}{625}\left(5x-1\right)\left(75x^2+28\right)}{3x\sqrt{9x^2+3}-\dfrac{6\sqrt{21}}{25}}+\dfrac{\dfrac{4}{625}\left(5x+4\right)\left(100x^2+100x+109\right)}{\left(4x+2\right)\sqrt{x^2+x+1}+\dfrac{6\sqrt{21}}{25}}\right)=0\)
\(\Rightarrow5x+1=0\Rightarrow x=-\dfrac{1}{5}\)
Câu 1 :
Xét điều kiện:\(\hept{\begin{cases}x\ge5\\x\le1\end{cases}}\)(Vô lý)
Vậy pt vô nghiệm
Câu 2 :
\(2\sqrt{x+2}+2\sqrt{x+2}-3\sqrt{x+2}=1\)\(\Leftrightarrow\sqrt{x+2}=1\Leftrightarrow x=-1\)
Vậy x=-1
Câu 3 :
\(\sqrt{3x^2-4x+3}=1-2x\)\(\Leftrightarrow3x^2-4x+3=1+4x^2-4x\)
\(\Leftrightarrow x^2=2\Leftrightarrow x=\sqrt{2}\)
Câu 4 :
\(4\sqrt{x+1}-3\sqrt{x+1}=4\Leftrightarrow\sqrt{x+1}=4\)
\(\Leftrightarrow x=15\)
Bài 1:
\(\left\{{}\begin{matrix}x+2y=1\\2x^2-5xy=48\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x=1-2y\left(1\right)\\2x^2-5xy=48\left(2\right)\end{matrix}\right.\)
Thay (1) vào (2)\(\Leftrightarrow2\left(1-2y\right)^2-5\left(1-2y\right)y=48\Leftrightarrow2\left(1-4y+4y^2\right)-5y+10y^2=48\Leftrightarrow2-8y+8y^2-5y+10y^2=48\Leftrightarrow18y^2-13y-46=0\Leftrightarrow\left(y-2\right)\left(18y+23\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}y=2\\y=-\frac{23}{18}\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=-3\\x=\frac{32}{9}\end{matrix}\right.\)
Vậy (x;y)={(\(-3;2\));(\(\frac{32}{9};-\frac{23}{18}\))}
Bài 2:
a) Đặt a=x2-1(a\(\ge-1\))
Vậy pt\(\Leftrightarrow a^2-4a=5\Leftrightarrow a^2-4a-5=0\Leftrightarrow\left(a-5\right)\left(a+1\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}a=5\\a=-1\end{matrix}\right.\)(tm)
TH1: a=5\(\Leftrightarrow x^2-1=5\Leftrightarrow x^2=6\Leftrightarrow x=\pm\sqrt{6}\)
TH2: a=-1\(\Leftrightarrow x^2-1=-1\Leftrightarrow x^2=0\Leftrightarrow x=0\)
Vậy S={\(-\sqrt{6};0;\sqrt{6}\)}
b) \(\left(x+2\right)^2-3x-5=\left(1-x\right)\left(1+x\right)\Leftrightarrow x^2+4x+4-3x-5=1-x^2\Leftrightarrow2x^2+x-2=0\Leftrightarrow\)\(\left[{}\begin{matrix}x=\frac{-1+\sqrt{17}}{4}\\x=\frac{-1-\sqrt{17}}{4}\end{matrix}\right.\)
Vậy S={\(\frac{-1+\sqrt{17}}{4};\frac{-1-\sqrt{17}}{4}\)}
c) Đặt a=\(x^2-3x+2\)
Vậy pt\(\Leftrightarrow\left(a+2\right)a=3\Leftrightarrow a^2+2a-3=0\Leftrightarrow\left(a-1\right)\left(a+3\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}a=1\\a=-3\end{matrix}\right.\)(tm)
TH1:\(a=1\Leftrightarrow x^2-3x+2=1\Leftrightarrow x^2-3x+1=0\Leftrightarrow\)\(\left[{}\begin{matrix}x=\frac{3+\sqrt{5}}{2}\\x=\frac{3-\sqrt{5}}{2}\end{matrix}\right.\)
TH2: a=-3\(\Leftrightarrow x^2-3x+2=-3\Leftrightarrow x^2-3x+5=0\)(vô nghiệm)
Vậy S=\(\left\{\frac{3+\sqrt{5}}{2};\frac{3-\sqrt{5}}{2}\right\}\)
x = - 0 , 3212201247
nhân ra sau đó giải bình thừơng