Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 2
ta có \(\left(\sqrt{8a^2+1}+\sqrt{8b^2+1}+\sqrt{8c^2+1}\right)^2\)
\(=\left(\sqrt{a}.\sqrt{\frac{8a^2+1}{a}}+\sqrt{b}.\sqrt{\frac{8b^2+1}{b}}+\sqrt{c}.\sqrt{\frac{8c^2+1}{c}}\right)^2\)\(=\left(A\right)\)
Áp dụng bất đẳng thức Bunhiacopxki ta có;
\(\left(A\right)\le\left(a+b+c\right)\left(8a+\frac{1}{a}+8b+\frac{1}{b}+8c+\frac{8}{c}\right)\)
\(=\left(a+b+c\right)\left(9a+9b+9c\right)=9\left(a+b+c\right)^2\)
\(\Rightarrow3\left(a+b+c\right)\ge\sqrt{8a^2+1}+\sqrt{8b^2+1}+\sqrt{8c^2+1}\)(đpcm)
Dấu \(=\)xảy ra khi \(a=b=c=1\)
a) (3x2 - 7x – 10)[2x2 + (1 - √5)x + √5 – 3] = 0
=> hoặc (3x2 - 7x – 10) = 0 (1)
hoặc 2x2 + (1 - √5)x + √5 – 3 = 0 (2)
Giải (1): phương trình a - b + c = 3 + 7 - 10 = 0
nên
x1 = - 1, x2 = =
Giải (2): phương trình có a + b + c = 2 + (1 - √5) + √5 - 3 = 0
nên
x3 = 1, x4 =
b) x3 + 3x2– 2x – 6 = 0 ⇔ x2(x + 3) – 2(x + 3) = 0 ⇔ (x + 3)(x2 - 2) = 0
=> hoặc x + 3 = 0
hoặc x2 - 2 = 0
Giải ra x1 = -3, x2 = -√2, x3 = √2
c) (x2 - 1)(0,6x + 1) = 0,6x2 + x ⇔ (0,6x + 1)(x2 – x – 1) = 0
=> hoặc 0,6x + 1 = 0 (1)
hoặc x2 – x – 1 = 0 (2)
(1) ⇔ 0,6x + 1 = 0
⇔ x2 = =
(2): ∆ = (-1)2 – 4 . 1 . (-1) = 1 + 4 = 5, √∆ = √5
x3 = , x4 =
Vậy phương trình có ba nghiệm:
x1 = , x2 = , x3 = ,
d) (x2 + 2x – 5)2 = ( x2 – x + 5)2 ⇔ (x2 + 2x – 5)2 - ( x2 – x + 5)2 = 0
⇔ (x2 + 2x – 5 + x2 – x + 5)( x2 + 2x – 5 - x2 + x - 5) = 0
⇔ (2x2 + x)(3x – 10) = 0
⇔ x(2x + 1)(3x – 10) = 0
Hoặc x = 0, x = , x =
Vậy phương trình có 3 nghiệm:
x1 = 0, x2 = , x3 =
b: \(\Leftrightarrow\left(x^2-2x+1-1\right)^2-2\left(x-1\right)^2-1=0\)
\(\Leftrightarrow\left[\left(x-1\right)^2-1\right]^2-2\left(x-1\right)^2-1=0\)
\(\Leftrightarrow\left(x-1\right)^4-2\left(x-1\right)^2+1-2\left(x-1\right)^2-1=0\)
\(\Leftrightarrow\left(x-1\right)^2\cdot\left(x-3\right)\left(x+1\right)=0\)
hay \(x\in\left\{1;3;-1\right\}\)
a: \(\Leftrightarrow2x^3-3x-10=-2\left(8-12x+6x^2-x^3\right)\)
\(\Leftrightarrow2x^3-3x-10=-16+24x-12x^2+2x^3\)
\(\Leftrightarrow-3x-10+16-24x+12x^2=0\)
=>\(12x^2-27x+6=0\)
hay \(x\in\left\{2;\dfrac{1}{4}\right\}\)
Bài 2:
a: \(\Leftrightarrow\left(x^2-3x+2\right)\left(x^2-3x+3\right)=0\)
=>x^2-3x+2=0
=>x=2 hoặc x=1
b: \(\Leftrightarrow\left(\left|x\right|\right)^2-\left|x\right|+m=0\)
Để phương trình có nghiệm thì \(\text{Δ}>=0\)
=>1-4m>=0
=>m<=1/4
Để phương trình vô nghiệm thì Δ<0
=>m>1/4
c: TH1: m=1
=>-2x+2=0
=>x=1
TH2: m<>1
\(\text{Δ}=\left(-2\right)^2-4\left(1-m\right)\cdot2m\)
\(=4+8m\left(m-1\right)\)
\(=8m^2-8m+4\)
Để phương trình có nghiệm thì Δ>=0
=>\(m\in R\)
a, Ta có: \(\Delta'=1-m+3=4-m\)
Phương trình có 2 nghiệm phân biệt \(\Leftrightarrow\Delta'>0\Leftrightarrow4-m>0\Leftrightarrow m< 4\)
b, ĐXXĐ: \(x\le\frac{9}{4}\)
\(pt\Leftrightarrow\sqrt{\left(9-4x\right)\left(x-3\right)^2}=\left|-2x+5\right|\sqrt{9-4x}\)
\(\Leftrightarrow\sqrt{9-4x}\left(\left|x-3\right|-\left|-2x+5\right|\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}9-4x=0\\\left|x-3\right|=\left|-2x+5\right|\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}9-4x=0\\x-3=-2x+5\\x-3=2x-5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{9}{4}\\x=\frac{8}{3}\left(l\right)\\x=2\end{matrix}\right.\)
Vậy pt đã cho có 2 nghiệm \(x=2;x=\frac{9}{4}\)
Đặt \(x^2-2x=a\) pt trở thành:
\(a^2-6a+5=0\Rightarrow\left[{}\begin{matrix}a=1\\a=5\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2-2x=1\\x^2-2x=5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-1=0\\x^2-2x-5=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\pm\sqrt{2}\\x=1\pm\sqrt{6}\end{matrix}\right.\)