Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a/ Đặt \(x^2+2x+1=\left(x+1\right)^2=t\ge0\)
\(\Rightarrow\left(t+2\right)t=3\Leftrightarrow t^2+2t-3=0\Rightarrow\left[{}\begin{matrix}t=1\\t=-3\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\left(x+1\right)^2=1\Rightarrow\left[{}\begin{matrix}x+1=1\\x+1=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
b/ \(\Leftrightarrow\left(x^2-x\right)\left(x^2-x+1\right)-6=0\)
Đặt \(x^2-x=t\Rightarrow t\left(t+1\right)-6=0\Rightarrow t^2+t-6=0\)
\(\Rightarrow\left[{}\begin{matrix}t=-3\\t=2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2-x=-3\\x^2-x=2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2-x+3=0\left(vn\right)\\x^2-x-2=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, - Đặt \(x^2+x=a\) ta được phương trình :\(a^2+4a-12=0\)
=> \(a^2-2a+6a-12=0\)
=> \(a\left(a-2\right)+6\left(a-2\right)=0\)
=> \(\left(a+6\right)\left(a-2\right)=0\)
=> \(\left[{}\begin{matrix}a+6=0\\a-2=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}a=2\\a=-6\end{matrix}\right.\)
- Thay lại \(x^2+x=a\) vào phương trình trên ta được :\(\left[{}\begin{matrix}x^2+x=2\\x^2+x=-6\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x^2+x-2=0\\x^2+x+6=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}\left(x+\frac{1}{2}\right)^2-\frac{9}{4}=0\\\left(x+\frac{1}{2}\right)^2+\frac{23}{4}=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}\left(x+\frac{1}{2}\right)^2=\frac{9}{4}\\\left(x+\frac{1}{2}\right)^2=-\frac{23}{4}\left(VL\right)\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x+\frac{1}{2}=\sqrt{\frac{9}{4}}\\x+\frac{1}{2}=-\sqrt{\frac{9}{4}}\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=\sqrt{\frac{9}{4}}-\frac{1}{2}=1\\x=-\sqrt{\frac{9}{4}}-\frac{1}{2}=-2\end{matrix}\right.\)
Vậy phương trình trên có nghiệm là \(S=\left\{1,-2\right\}\)
b, Đặt \(x^2+2x+3=a\) -> làm tương tự câu a .
c, Ta có : \(\left(x-2\right)\left(x+2\right)\left(x^2-10\right)=72\)
=> \(\left(x^2-4\right)\left(x^2-10\right)=72\)
- Đặt \(x^2-4=a\) và \(x^2-10=a-6\) ta được phương trình :
\(a\left(a-6\right)=72\)
=> \(a^2-6a-72=0\)
=> \(a^2+6a-12a-72=0\)
=> \(a\left(a+6\right)-12\left(a+6\right)=0\)
=> \(\left(a+6\right)\left(a-12\right)=0\)
=> \(\left[{}\begin{matrix}a+6=0\\a-12=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}a=-6\\a=12\end{matrix}\right.\)
- Thay lại \(x^2-4=a\) vào phương trình trên ta được :\(\left[{}\begin{matrix}x^2-4=-6\\x^2-4=12\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x^2=-2\left(VL\right)\\x^2=16\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=\sqrt{16}=4\\x=-\sqrt{16}=-4\end{matrix}\right.\)
Vậy phương trình trên có nghiệm là \(S=\left\{4,-4\right\}\)
d, Ta có : \(x\left(x+1\right)\left(x^2+x+1\right)=42\)
=> \(\left(x^2+x\right)\left(x^2+x+1\right)=42\)
- Đặt \(x^2+x=a\) ta được phương trình : \(a\left(a+1\right)=42\)
=> \(a^2+a-42=0\)
=> \(a^2+7a-6a-42=0\)
=> \(a\left(a+7\right)-6\left(a+7\right)=0\)
=> \(\left(a-6\right)\left(a+7\right)=0\)
=> \(\left[{}\begin{matrix}a=6\\a=-7\end{matrix}\right.\)
- Thay \(a=x^2+x\) vào phương trình ta được : \(\left[{}\begin{matrix}x^2+x=6\\x^2+x=-7\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x^2+x-6=0\\x^2+x+7=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}\left(x+\frac{1}{2}\right)^2-\frac{25}{4}=0\\\left(x+\frac{1}{2}\right)^2+\frac{27}{4}=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}\left(x+\frac{1}{2}\right)^2=\frac{25}{4}\\\left(x+\frac{1}{2}\right)^2=-\frac{27}{4}\left(VL\right)\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x+\frac{1}{2}=\sqrt{\frac{25}{4}}\\x+\frac{1}{2}=-\sqrt{\frac{25}{4}}\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=\sqrt{\frac{25}{4}}-\frac{1}{2}=2\\x=-\sqrt{\frac{25}{4}}-\frac{1}{2}=-3\end{matrix}\right.\)
Vậy phương trình trên có tập nghiệm là \(S=\left\{2;-3\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
1.
\((x^2-6x)^2-2(x-3)^2+2=0\)
\(\Leftrightarrow (x^2-6x)^2-2(x^2-6x+9)+2=0\)
\(\Leftrightarrow (x^2-6x)^2-2(x^2-6x)-16=0\)
Đặt $x^2-6x=a$ thì pt trở thành:
$a^2-2a-16=0$
$\Leftrightarrow a=1\pm \sqrt{17}$
Nếu $a=1+\sqrt{17}$
$\Leftrightarrow x^2-6x=1+\sqrt{17}$
$\Leftrightarrow (x-3)^2=10+\sqrt{17}$
$\Rightarrow x=3\pm \sqrt{10+\sqrt{17}}$
Nếu $a=1-\sqrt{17}$
$\Rightarrow x=3\pm \sqrt{10-\sqrt{17}}$
Vậy.........
2.
$x^4-2x^3+x=2$
$\Leftrightarrow x^3(x-2)+(x-2)=0$
$\Leftrightarrow (x-2)(x^3+1)=0$
$\Leftrightarrow (x-2)(x+1)(x^2-x+1)=0$
Thấy rằng $x^2-x+1=(x-\frac{1}{2})^2+\frac{3}{4}>0$ nên $(x-2)(x+1)=0$
$\Rightarrow x=2$ hoặc $x=-1$
Vậy.......
Bài 2:
1.
ĐKXĐ: $x\neq 1$. Ta có:
\(x^2+(\frac{x}{x-1})^2=8\)
\(\Leftrightarrow x^2+(\frac{x}{x-1})^2+\frac{2x^2}{x-1}=8+\frac{2x^2}{x-1}\)
\(\Leftrightarrow (x+\frac{x}{x-1})^2=8+\frac{2x^2}{x-1}\)
\(\Leftrightarrow (\frac{x^2}{x-1})^2=8+\frac{2x^2}{x-1}\)
Đặt $\frac{x^2}{x-1}=a$ thì pt trở thành:
$a^2=8+2a$
$\Leftrightarrow (a-4)(a+2)=0$
Nếu $a=4\Leftrightarrow \frac{x^2}{x-1}=4$
$\Rightarrow x^2-4x+4=0\Leftrightarrow (x-2)^2=0\Rightarrow x=2$ (tm)
Nếu $a=-2\Leftrightarrow \frac{x^2}{x-1}=-2$
$x^2+2x-2=0\Rightarrow x=-1\pm \sqrt{3}$ (tm)
Vậy........
2. ĐKXĐ: $x\neq 0; 2$
$(\frac{x-1}{x})^2+(\frac{x-1}{x-2})^2=\frac{40}{49}$
$\Leftrightarrow (\frac{x-1}{x}+\frac{x-1}{x-2})^2-\frac{2(x-1)^2}{x(x-2)}=\frac{40}{49}$
$\Leftrightarrow 4\left[\frac{(x-1)^2}{x(x-2)}\right]^2-\frac{2(x-1)^2}{x(x-2)}=\frac{40}{49}$
Đặt $\frac{(x-1)^2}{x(x-2)}=a$ thì pt trở thành:
$4a^2-2a=\frac{40}{49}$
$\Rightarrow 2a^2-a-\frac{20}{49}=0$
$\Rightarrow a=\frac{7\pm \sqrt{209}}{28}$
$\Leftrightarrow 1+\frac{1}{x(x-2)}=\frac{7\pm \sqrt{209}}{28}$
$\Leftrightarrow \frac{1}{x(x-2)}=\frac{-21\pm \sqrt{209}}{28}$
$\Rightarrow x(x-2)=\frac{28}{-21\pm \sqrt{209}}$
$\Rightarrow (x-1)^2=\frac{7\pm \sqrt{209}}{-21\pm \sqrt{209}}$.
Dễ thấy $\frac{7+\sqrt{209}}{-21+\sqrt{209}}< 0$ nên vô lý
Do đó $(x-1)^2=\frac{7-\sqrt{209}}{-21-\sqrt{209}}$
$\Leftrightarrow x=1\pm \sqrt{\frac{7-\sqrt{209}}{-21-\sqrt{209}}}$
Vậy........
![](https://rs.olm.vn/images/avt/0.png?1311)
câu a:
\(8x^2-6x+3-2x=\left(2x-1\right)\sqrt{8x^2-6x+3}\)
đặt \(t=\sqrt{8x^2-6x+3}\Leftrightarrow t^2=8x^2-6x+3\)phương trình trở thành
\(t^2-2x=\left(2x-1\right)t\Leftrightarrow t^2-\left(2x-1\right)t-2x=0\)
có \(\Delta=\left(2x-1\right)^2+8x=\left(2x+1\right)^2\Rightarrow\orbr{\begin{cases}t=-1\\t=2x\end{cases}}\)
- \(t=-1\Rightarrow8x^2-6x+3=1\Leftrightarrow8x^2-6x+2=0VN\)
- \(t=2x\Rightarrow8x^2-6x+3=4x^2\Leftrightarrow4x^2-6x+3=0VN\)
Câu b:
Đặt \(t=\sqrt{x^2+1}\Leftrightarrow t^2=x^2+1\left(t>0\right)\)
PT\(\Leftrightarrow t^2-\left(x+3\right)t+3x=0\)
có :\(\Delta=\left(x+3\right)^2-4.3x=\left(x-3\right)^2\Rightarrow\orbr{\begin{cases}t=3\\t=x\end{cases}}\)
- \(t=3\Rightarrow9=x^2+1\Leftrightarrow x^2=8\Leftrightarrow\orbr{\begin{cases}x=2\sqrt{2}\\x=-2\sqrt{2}\end{cases}}\)
- \(t=x\Leftrightarrow x^2=x^2+1VN\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
a) \(\left(2x+3\right)\cdot\left(4x^2-6x+9\right)-2\left(4x^3-1\right)\)
\(=8x^3-12x^2+18x+12x^2-18x+27-8x^3-3=27-3=24\)
--> đpcm
b) Sửa đề: \(\left(x+3\right)^3-\left(x+9\right)\left(x^2+27\right)\)
\(=x^3+9x^2+27x+27-\left(x^3+27x+9x^2+243\right)\)
\(=x^3+9x^2+27x+27-x^3-27x-9x^2-243=27-243=-216\)
--> đpcm
c) \(\left(x+y\right)\left(x^2-xy+y^2\right)+\left(x-y\right)\left(x^2+xy+y^2\right)-2x^3\)
\(=x^3+y^3+x^3-y^3-2x^3=2x^3-2x^3=0\)
--> đpcm
B1: a) \(\left(2x+3\right)\left(4x^2-6x+9\right)-2\left(4x^3-1\right)\)
\(=8x^3-27-8x^3+2\)
\(=-25\)
b) c) Làm theo câu a áp dụng HĐT.
B2:
a) \(\left(x+2\right)^2-9=0\)
\(\Rightarrow\left(x+2+3\right)\left(x+2-3\right)=0\)
\(\Rightarrow\left(x+5\right)\left(x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+5=0\\x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-5\\x=1\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=-5\\x=1\end{matrix}\right..\)
Mấy câu b,c,d bn chịu khó tạo HĐT nhé.
e) \(\Rightarrow4x^2-4x+1+x^2+6x+9-5x^2+245=0\)
\(\Rightarrow2x=-255\)
\(\Rightarrow x=-\dfrac{255}{2}\)
Vậy \(x=-\dfrac{255}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
~~~~~e)~~~~~
\(\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)
Đặt \(x^2+x+1=v\)
Ta có: \(v.\left(v+1\right)-12\)
\(=v^2+v-12\)
\(=v^2-3v+4v-12\)
\(=v\left(v-3\right)+4\left(v-3\right)\)
\(=\left(v-3\right)\left(v+4\right)\)
\(=\left(x^2+x+1-3\right)\left(x^2+x+1+4\right)\)
\(=\left(x^2+x-2\right)\left(x^2+x+5\right)\)
~~~~~g)~~~~~
\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\)(nhân cái đầu vs cái cuối, hai cái giữa nhân vs nhau)
Đặt \(x^2+5x+5=t\)
Ta có: \(\left(t-1\right)\left(t+1\right)-24\)
\(=t^2-1-24\)
\(=t^2-25\)
\(=\left(t-5\right)\left(t+5\right)\)
\(=\left(x^2+5x+5-5\right)\left(x^2+5x+5+5\right)\)
\(=\left(x^2+5x\right)\left(x^2+5x+10\right)\)
~~~~~h)~~~~~
\(\left(x^2+x+1\right)\left(x^2+3x+1\right)+x^2\)
Đặt \(x^2+2x+1=n\)
Ta có: \(\left(n-x\right)\left(n+x\right)+x^2\)
\(=n^2-x^2+x^2\)
\(=n^2\)
\(=\left(x^2+2x+1\right)^2\)
\(=\left(\left(x+1\right)^2\right)^2\)
\(=\left(x+1\right)^4\)
~~~~~~~~~~~~~~~~~~~~
(Mong là mình làm đúng, chúc you học tốt nha, tíck cho mìk với nhé!)
![](https://rs.olm.vn/images/avt/0.png?1311)
a); b) Do tích = 0
=> Từng thừa số = 0 và ta nhận xét: \(x^2+2;x^2+3>0\)
=> a) \(\orbr{\begin{cases}x=1\\x=-\frac{5}{2}\end{cases}}\)
và câu b) \(\orbr{\begin{cases}x=\frac{1}{2}\\x=5\end{cases}}\)
a; *x-1=0 <=>x=1
*2x+5=0 <=>x=-2,5
*x2+2=0 <=> ko có x
b; tương tự a
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu 1 :
- Gọi chiều dài miếng đất là x ( m, x > 6 )
=> Chiều rộng miếng đất là : x - 6 ( m )
=> Chu vi miếng đất đó là : \(2\left(x+x-6\right)\) ( m )
Theo đề bài chu vi mảnh đất đó là 60m nên ta có phương trình :
\(2\left(x+x-6\right)=60\)
=> \(2x-6=30\)
=> \(2x=24\)
=> \(x=12\) ( TM )
Mà diện tích mảnh đất là : \(x\left(x-6\right)\)
=> Smảnh đất = \(12\left(12-6\right)=12.6=72\left(m^2\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1,
a,\(2x\left(3x^2-5x+3\right)\)
\(=6x^3-10x^2+6x\)
b,\(-2x\left(x^2+5x-3\right)\)
\(=-2x^3-10x^2+6x\)
c,\(-\dfrac{1}{2}x\left(2x^3-4x+3\right)\)
\(=-x^4+2x^2-\dfrac{3}{2}x\)
Bài 2:
a) \(\left(2x-1\right)\left(x^2-5-4\right)\)
\(=\left(2x-1\right)\left(x^2-9\right)\)
\(=2x^3-18x-x^2+9\)
b) \(-\left(5x-4\right)\left(2x+3\right)\)
\(=-\left(10x^2+15x-8x-12\right)\)
\(=-10x^2-7x+12\)
c) \(\left(2x-y\right)\left(4x^2-2xy+y^2\right)\)
\(=8x^3-y^3\)
( x2 - 1)2 - x( x2 - 1) - 2x2 = 0 ( 1 )
Đặt : x2 - 1 = a , ta có :
( 1) ⇔ a2 - ax - 2x2 = 0
⇔ a2 + ax - 2ax - 2x2 = 0
⇔ a( a + x) -2x( a + x) = 0
⇔ ( a + x)( a - 2x ) = 0
TH1 : Với : a + x = 0
⇔ x2 + x - 1 = 0
⇔ x2 +\(2.\dfrac{1}{2}x+\dfrac{1}{4}-1-\dfrac{1}{4}=0\)
⇔ \(\left(x+\dfrac{1}{2}\right)^2-\dfrac{5}{4}\) = 0
⇔ \(\left(x+\dfrac{1}{2}\right)^2=\dfrac{5}{4}\)
* ) \(x+\dfrac{1}{2}=\dfrac{\sqrt{5}}{2}\)
⇔ \(x=\dfrac{\sqrt{5}-1}{2}\)
*) \(x+\dfrac{1}{2}=-\dfrac{\sqrt{5}}{2}\)
⇔\(x=-\dfrac{\sqrt{5}+1}{2}\)
TH2 . a - 2x = 0
⇔ x2 - 2x - 1 = 0
⇔ x2 - 2x + 1 - 2 = 0
⇔ ( x - 1)2 = 2
*) x - 1 = \(\sqrt{2}\)
⇔ x = \(\sqrt{2}\) + 1
*) x - 1 = - \(\sqrt{2}\)
⇔ x = 1 - \(\sqrt{2}\)
KL.....
p/s : Mk nghĩ zậy![hiha hiha](https://hoc24.vn/media/cke24/plugins/smiley/images/hiha.png)
![hiha hiha](https://hoc24.vn/media/cke24/plugins/smiley/images/hiha.png)
tớ cũng vừa làm ra khi nãy![hehe hehe](https://hoc24.vn/media/cke24/plugins/smiley/images/hehe.png)