K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2019

Hung nguyen, Trần Thanh Phương, Sky SơnTùng, @tth_new, @Nguyễn Việt Lâm, @Akai Haruma, @No choice teen

help me, pleaseee

Cần gấp lắm ạ!

3 tháng 4 2020

Câu 1 là \(\left(8x-4\right)\sqrt{x}-1\) hay là \(\left(8x-4\right)\sqrt{x-1}\)?

3 tháng 4 2020

Câu 1:ĐK \(x\ge\frac{1}{2}\)

\(4x^2+\left(8x-4\right)\sqrt{x}-1=3x+2\sqrt{2x^2+5x-3}\)

<=> \(\left(4x^2-3x-1\right)+4\left(2x-1\right)\sqrt{x}-2\sqrt{\left(2x-1\right)\left(x+3\right)}\)

<=> \(\left(x-1\right)\left(4x+1\right)+2\sqrt{2x-1}\left(2\sqrt{x\left(2x-1\right)}-\sqrt{x+3}\right)=0\)

<=> \(\left(x-1\right)\left(4x+1\right)+2\sqrt{2x-1}.\frac{8x^2-4x-x-3}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}=0\)

<=>\(\left(x-1\right)\left(4x+1\right)+2\sqrt{2x-1}.\frac{\left(x-1\right)\left(8x+3\right)}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}=0\)

<=> \(\left(x-1\right)\left(4x+1+2\sqrt{2x-1}.\frac{8x+3}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}\right)=0\)

Với \(x\ge\frac{1}{2}\)thì \(4x+1+2\sqrt{2x-1}.\frac{8x-3}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}>0\)

=> \(x=1\)(TM ĐKXĐ)

Vậy x=1

10 tháng 11 2019

ĐKXĐ: bla bla bla

\(3x\left(x-2\right)\sqrt{3x-1}=2\left(x^3-5x^2+7x-2\right)\)

\(\Leftrightarrow3x\left(x-2\right)\sqrt{3x-1}=2\left(x-2\right)\left(x^2-3x+1\right)\)

TH1: \(x=2\)

TH2: \(3x\sqrt{3x-1}=2\left(x^2-3x+1\right)\)

Đặt \(\sqrt{3x-1}=t\ge0\)

\(\Rightarrow3tx=2\left(x^2-t^2\right)\)

\(\Leftrightarrow2x^2-3tx-2t^2=0\)

\(\Leftrightarrow\left(2x+t\right)\left(x-2t\right)=0\)

\(\Rightarrow x=2t\)

\(\Leftrightarrow x=2\sqrt{3x-1}\)

\(\Leftrightarrow x^2=4\left(3x-1\right)\)

\(\Leftrightarrow x^2-12x+4=0\)

NV
5 tháng 3 2020

a/ \(\Rightarrow2x^2-3x-11=x^2-1\)

\(\Leftrightarrow x^2-3x-10=0\Rightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)

Thay 2 nghiệm vào cả 2 căn thức thấy đều xác định

Vậy nghiệm của pt là ...

b/ \(\left\{{}\begin{matrix}x\ge-1\\2x^2+3x-5=\left(x+1\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x^2+x-6=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x\ge-1\\\left[{}\begin{matrix}x=2\\x=-3\left(l\right)\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow x=2\)

NV
5 tháng 3 2020

c/

\(\Leftrightarrow x^2+4x+4=3x^2-5x+14\)

\(\Leftrightarrow2x^2-9x+10=0\)

\(\Rightarrow\left[{}\begin{matrix}x=2\\x=\frac{5}{2}\end{matrix}\right.\)

d/

\(\Leftrightarrow\left\{{}\begin{matrix}-x-9\ge0\\\left(x-1\right)\left(2x-3\right)=\left(-x-9\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le-9\\2x^2-5x+3=x^2+18x+81\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le-9\\x^2-23x-78=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=26\left(ktm\right)\\x=-3\left(ktm\right)\end{matrix}\right.\)

Vậy pt vô nghiệm

1 tháng 11 2019

nhiều thế giải ko đổi đâu bạn

1 tháng 11 2019

vậy trả lời câu a thôi

9 tháng 9 2017

c1 cậu đặt cái trong căn =a

=>pt<=> a^2-2x=2xa-a

c2 cậu đưa về dang a^2=b^2

9 tháng 9 2017

bài 2 nhé 

đặt \(a=\sqrt{x+2}\)

ta có pt<=> 

\(2a^3=3x\left(x+2\right)-x^3\Leftrightarrow2a^3=3xa^2-x^3\)

\(\Leftrightarrow2a^3-3xa^2+x^3=0\Leftrightarrow2a^3-2a^2x+x^2-xa^2=0\)

\(\Leftrightarrow\left(a-x\right)\left(2a^2-ax-x^2\right)\)