K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2021

\(\left(\sqrt{x+5}-\sqrt{x+2}\right)\left(1+\sqrt{x^2+7x+10}\right)=3\left(đk:x\ge-2\right)\)

Đặt \(a=\sqrt{x+5},b=\sqrt{x+2}\left(đk:a,b\ge0,a\ne b\right)\)

\(\Rightarrow\left\{{}\begin{matrix}ab=\sqrt{\left(x+5\right)\left(x+2\right)}=\sqrt{x^2+7x+10}\\a^2-b^2=x+5-x-2=3\end{matrix}\right.\)

PT trở thành: \(\left(a-b\right)\left(1+ab\right)=a^2-b^2\)

\(\Leftrightarrow\left(a-b\right)\left(ab+1\right)=\left(a-b\right)\left(a+b\right)\)

\(\Leftrightarrow\left(a-b\right)\left(ab+1-a-b\right)=0\)

\(\Leftrightarrow\left(a-b\right)\left(b-1\right)\left(a-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=b\left(loại\right)\\a=1\\b=1\end{matrix}\right.\)

+ Với a=1

\(\Rightarrow\sqrt{x+5}=1\Leftrightarrow x+5=1\Leftrightarrow x=-4\left(ktm\right)\)

+ Với b=1

\(\Rightarrow\sqrt{x+2}=1\Leftrightarrow x+2=1\Leftrightarrow x=-1\left(tm\right)\)

Vậy \(S=\left\{-1\right\}\)

27 tháng 9 2021

Đặt \(\left\{{}\begin{matrix}\sqrt{x+5}=a\\\sqrt{x+2=b}\end{matrix}\right.\)

Thì được:

\(\left(a-b\right)\left(1+ab\right)=a^2-b^2\)

\(\Leftrightarrow\left(a-1\right)\left(b-1\right)\left(a-b\right)=0\)

Làm tiếp

13 tháng 10 2015

Đk x>= -2 

Đặt \(\sqrt{x+5}=a;\sqrt{x+2}=b\Rightarrow\sqrt{x^2+7x+10}=a+b;a^2-b^2=x+5-x-2=3\)

pt <=> \(\left(a-b\right)\left(1+ab\right)=a^2-b^2\)

<=> \(\left(a-b\right)\left(ab+1\right)=\left(a-b\right)\left(a+b\right)\)

<=> \(\left(a-b\right)\left(ab+1\right)-\left(a-b\right)\left(a+b\right)=0\)

<=> \(\left(a-b\right)\left(ab+1-a-b\right)=0\)

<=> \(\left(a-b\right)\left(b-1\right)\left(a-1\right)=0\)

=> a = b hoặc b = 1 hoặc a = 1 

(+) a = b => x + 5 = x +2 => 0x = -3 (loại )

(+) a = 1 => x + 5 = 1 => x = -4 (loại )

(+) b = 1 => x + 2 = 1=> x = -1 ( TM)

Vậy x = -1 là nghiệm của pt 

23 tháng 1 2016

đặt \(\sqrt{x+5}=a\);\(\sqrt{x+2}=b\)  => ab=\(\sqrt{x^2+7x+10}\) và \(a^2-b^2=3\)

 do đó pt trở thành \(\left(a-b\right)\left(1+ab\right)=a^2-b^2\)

                         \(\left(a-b\right)\left(1+ab\right)-\left(a-b\right)\left(a+b\right)=0\)

                         \(\left(a-b\right)\left(1+ab-a-b\right)=0\) 

đến đây tự giải tiếp nhé

23 tháng 1 2016

em chưa học , em mới lớp 5 thui

21 tháng 4 2017

\(\sqrt{3x^2-6x-6}=3\sqrt{\left(2-x\right)^5}+\left(7x-19\right)\sqrt{2-x}\)

Điều kiện: \(\hept{\begin{cases}3x^2-6x-6\ge0\\2-x\ge0\end{cases}}\)

\(\Rightarrow x\le1-\sqrt{3}\)

Ta có:

\(\frac{\sqrt{3x^2-6x-6}}{\sqrt{2-x}}=3\left(2-x\right)^2+\left(7x-19\right)\) (điều kiện \(x\le\frac{5}{6}-\frac{\sqrt{109}}{6}\))

\(\Leftrightarrow\frac{3x^2-6x-6}{2-x}=9x^4-30x^3-17x^2+70x+49\)

\(\Leftrightarrow\left(x+1\right)\left(3x-8\right)\left(3x^3-11x^2+4+13\right)=0\)

(Kết hợp với điều kiện ta suy ra) 

\(\Leftrightarrow x=-1\)

21 tháng 4 2017

x = 1 nha bạn

Cách giải y hệt bạn alibaba nguyễn. Các bạn làm theo nha

Đúng 100%

Đúng 100%

1 tháng 9 2018

Đặt từng cái căn là a và b, đưa về dạng

\(\left(a-b\right)\left(ab+1\right)=a^2-b^2\)

Chuyển vế đưa về phương trình tích là xong

AH
Akai Haruma
Giáo viên
24 tháng 10 2018

Câu 1:

ĐK: \(x\geq -2\)

Đặt \(\sqrt{x+5}=a; \sqrt{x+2}=b(a,b\geq 0)\)

\(\Rightarrow ab=\sqrt{(x+5)(x+2)}=\sqrt{x^2+7x+10}\)

PT trở thành:

\((a-b)(1+ab)=3\)

\(\Leftrightarrow (a-b)(1+ab)=(x+5)-(x+2)=a^2-b^2\)

\(\Leftrightarrow (a-b)(1+ab)-(a-b)(a+b)=0\)

\(\Leftrightarrow (a-b)(1+ab-a-b)=0\)

\(\Leftrightarrow (a-b)(a-1)(b-1)=0\)

\(a\neq b\Rightarrow \left[\begin{matrix} a-1=0\\ b-1=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} a=\sqrt{x+5}=1\\ b=\sqrt{x+2}=1\end{matrix}\right.\)

\(\Rightarrow \left[\begin{matrix} x=-4\\ x=-1\end{matrix}\right.\). Vì $x\geq -2$ nên chỉ có $x=-1$ là nghiệm duy nhất.

AH
Akai Haruma
Giáo viên
24 tháng 10 2018

Câu 2:

ĐK: \(-4\leq x\leq 4\)

Ta có: \((\sqrt{x+4}-2)(\sqrt{4-x}+2)=2x\)

\(\Leftrightarrow \frac{(x+4)-2^2}{\sqrt{x+4}+2}.(\sqrt{4-x}+2)=2x\)

\(\Leftrightarrow x.\frac{\sqrt{4-x}+2}{\sqrt{x+4}+2}=2x\)

\(\Leftrightarrow x\left(\frac{\sqrt{4-x}+2}{\sqrt{x+4}+2}-2\right)=0\)

\(\Rightarrow \left[\begin{matrix} x=0\\ \sqrt{4-x}+2=2\sqrt{x+4}+4(*)\end{matrix}\right.\)

Xét $(*)$

Đặt \(\sqrt{4-x}=a; \sqrt{x+4}=b\) thì ta có hệ:

\(\left\{\begin{matrix} a^2+b^2=8\\ a+2=2b+4\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a^2+b^2=8\\ a=2(b+1)\end{matrix}\right.\)

\(\Rightarrow 4(b+1)^2+b^2=8\)

\(\Leftrightarrow 5b^2+8b-4=0\Leftrightarrow (5b-2)(b+2)=0\)

\(\Rightarrow b=\frac{2}{5}\) (do \(b\geq 0)\)

\(\Rightarrow x+4=b^2=\frac{4}{25}\Rightarrow x=\frac{-96}{25}\) (t/m)

Vậy \(x\in \left\{ \frac{-96}{25}; 0\right\}\)

21 tháng 5 2016

i)

\(x^2-x^2\sqrt{2}-2x-2\sqrt{2}x+1+3\sqrt{2}=0\)

\(\left(x-1\right)^2+\sqrt{2}\left(x^2-2x+3\right)=0\)

\(\left(x-1\right)^2+\sqrt{2}\left(x-1\right)^2+2\sqrt{2}=0\)

\(\left(x-1\right)^2+\sqrt{2}\left(x-1\right)^2=-2\sqrt{2}\)

=> Phương trình vô nghiệm

ii)

Đặt: \(6x^2-7x=a\)

Ta có: \(a^2-2a-3=0\)

\(\left(a-3\right)\left(a+1\right)=0\)

\(\left(6x^2-7x-3\right)\left(6x^2-7x+1\right)=0\)

\(x=\frac{3}{2};-\frac{1}{3};1;\frac{1}{6}\)

21 tháng 5 2016

 Phương trình vô nghiệm

ii)

Đặt: $6x^2-7x=a$6x27x=a

Ta có: $a^2-2a-3=0$a22a3=0

$\left(a-3\right)\left(a+1\right)=0$(a3)(a+1)=0

$\left(6x^2-7x-3\right)\left(6x^2-7x+1\right)=0$(6x27x3)(6x27x+1)=0

$