Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) ĐKXD:...
\(pt\Leftrightarrow\left(\sqrt{x+2}+\sqrt{x-2}\right)^2=6-2x\)
\(\Leftrightarrow\sqrt{x+2}+\sqrt{x-2}=\sqrt{6-2x}\)
Đến đây dễ rồi
![](https://rs.olm.vn/images/avt/0.png?1311)
<=><=>(X+1)(Y+1)=6 và (x+1)^3+(y+1)^3=35đặt X+1;Y+1 biến đổi vế 2 giải ra đc(1;2);(2;1)
b,<=>\(\left[\sqrt{2}+1\right]^x+\left[\sqrt{2}-1\right]^x=6\)
<=>\(2\sqrt{2}^x+2=6\)
<=>x=2
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt \(\hept{\begin{cases}\sqrt[3]{x+1}=a\\\sqrt[3]{x-1}=b\end{cases}\Leftrightarrow\hept{\begin{cases}x+1=a^3\\x-1=b^3\end{cases}}}\)
Ta có
\(pt\Leftrightarrow a^2+b^2+ab=1\) (1)
Lại có \(a^3-b^3=2\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2\right)=2\) (2)
Thay (1) vào (2) ta có a-b=2<=>a=2+b thay và (1)
\(\left(2+b\right)^2+b^2+b\left(b+2\right)=1\)
\(\Leftrightarrow3b^2+6b+3=0\)
\(\Leftrightarrow3\left(b+1\right)^2=0\Leftrightarrow b=-1\)
\(\Leftrightarrow\sqrt[3]{x-1}=-1\Leftrightarrow x=0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bạn tự tìm điều kiện xác định nhé :)
- \(\left(\sqrt{x+3}-\sqrt{x}\right)\left(\sqrt{1-x}+1\right)=1\)
\(\Leftrightarrow\left(\sqrt{x+3}+\sqrt{x}\right)\left(\sqrt{x+3}-\sqrt{x}\right)\left(\sqrt{1-x}+1\right)=\sqrt{x+3}+\sqrt{x}\)
\(\Leftrightarrow3\left(\sqrt{1-x}+1\right)=\sqrt{x+3}+\sqrt{x}\)
Tới đây pt đã đơn giản hơn!
- \(3x^2+2x=2\sqrt{x^2+x}-x+1\)
\(\Leftrightarrow3\left(x^2+x\right)-2\sqrt{x^2+x}-1=0\)
Đặt \(t=\sqrt{x^2+x}\) thì pt trở thành \(3t^2-2t-1=0\)
Từ đó dễ dàng giải tiếp!
- Đặt \(a=\sqrt{x+x^2}\), \(b=\sqrt{x-x^2}\) thì ta có \(\hept{\begin{cases}a+b=x+1\\a^2+b^2=2x\end{cases}}\)
Tới đây bạn tự giải tiếp.
![](https://rs.olm.vn/images/avt/0.png?1311)
NX: x = 0 là 1 nghiệm của pt
Nếu \(x\ne0\)
\(ĐKXĐ:x\ge3\)
Ta có : \(\sqrt{x\left(x+1\right)}-\sqrt{x\left(x+2\right)}=\sqrt{x\left(x-3\right)}\)
\(\Leftrightarrow\sqrt{x\left(x+1\right)}-\sqrt{x\left(x+2\right)}-\sqrt{x\left(x-3\right)}=0\)(1)
Vì mỗi ngoặc trong căn đều dương nên ta tách ra được
\(\left(1\right)\Leftrightarrow\sqrt{x}\left(\sqrt{x+1}-\sqrt{x+2}-\sqrt{x-3}\right)=0\)
\(\Leftrightarrow\sqrt{x}=0\left(h\right)\sqrt{x+1}-\sqrt{x+2}-\sqrt{x-3}=0\)
*Nếu \(\sqrt{x}=0\)
\(\Rightarrow x=0\)(loại vì ko thỏa mãn ĐKXĐ)
*Nếu \(\sqrt{x+1}-\sqrt{x+2}-\sqrt{x-3}=0\)
\(\Leftrightarrow\sqrt{x+1}=\sqrt{x+2}+\sqrt{x-2}\)
Dễ thấy VT < VP
=> pt vô nghiệm
Vậy pt có 1 nghiệm duy nhất x = 0
Bổ sung chỗ ĐKXĐ nhé !
\(ĐKXĐ:\orbr{\begin{cases}x\ge3\\x\le-2\end{cases}}\)
Còn phần tiếp theo làm tương tự !
ĐKXĐ: \(x\ge2\)
Đặt \(\sqrt{x+1}=a\), \(\sqrt{x-2}=b\)
Ta có hpt:
\(\hept{\begin{cases}\left(a-b\right)\left(1+ab\right)=3\\a^2-b^2=3\end{cases}}\)\(\Rightarrow\left(a-b\right)\left(1+ab\right)=\left(a-b\right)\left(a+b\right)\)
\(\Rightarrow a+b=1+ab\)(Do a-b không thể bằng 0)
\(\Leftrightarrow\left(a-1\right)-b\left(a-1\right)=0\)
\(\Leftrightarrow\left(a-1\right)\left(1-b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=1\\b=1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\left(ktmđkxđ\right)\\x=3\left(tmđkxđ\right)\end{cases}}}\Rightarrow x=3\)
Vậy nghiệm của pt trên là x=3