Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5) \(ĐK:x\ge-\frac{3}{2}\)
\(x^3+4x-\left(2x+7\right)\sqrt{2x+3}=0\)
\(\Leftrightarrow\frac{x^3+4x}{2x+7}=\sqrt{2x+3}\Leftrightarrow\frac{x^3+4x}{2x+7}-3=\sqrt{2x+3}-3\)
\(\Leftrightarrow\frac{\left(x-3\right)\left(x^2+3x+7\right)}{2x+7}=\frac{2\left(x-3\right)}{\sqrt{2x+3}+3}\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{x^2+3x+7}{2x+7}-\frac{2}{\sqrt{2x+3}+3}\right)=0\)
(không có nghiệm thực)
Vậy phương trình có 1 nghiệm duy nhất là 3
1) \(Pt\Leftrightarrow-x^2-3x+10=3\sqrt{x^2+3x}\)( đk: \(x\le-3,x\ge0\)
Đặt \(t=\sqrt{x^2+3x},t\ge0\)
Pt trở thành: \(-t^2-3t+10=0\Leftrightarrow t=2\left(dot\ge0\right)\)
giải \(\sqrt{x^2+3x}=2\Leftrightarrow\orbr{\begin{cases}x=1\\x=-4\end{cases}}\)
từ dòng cuối là sai rồi bạn à
Bạn bỏ dòng cuối đi còn lại đúng rồi
Ở tử đặt nhân tử chung căn x chung rồi lại đặt căn x +1 chung
Ở mẫu tách 3 căn x ra 2 căn x +căn x rồi đặt nhân tử 2 căn x ra
rút gọn được \(\frac{3\sqrt{x}-5}{2\sqrt{x}+1}\)
Nhận xét : \(\sqrt{\left(5-2\sqrt{6}\right)^x}.\sqrt{\left(5+2\sqrt{6}\right)^x}=1\)
Ta đặt \(\sqrt{\left(5-2\sqrt{6}\right)^x}=a\Rightarrow\sqrt{\left(5+2\sqrt{6}\right)^x}=\frac{1}{a}\)
Khi đó phương trình ban đầu trở thành :
\(a+\frac{1}{a}=10\Rightarrow a^2-10a+1=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=5+2\sqrt{6}\\a=5-2\sqrt{6}\end{cases}}\)
+) Với \(a=5+2\sqrt{6}\Rightarrow\sqrt{\left(5-2\sqrt{6}\right)^x}=5+2\sqrt{6}\)
\(\Leftrightarrow\left(5-2\sqrt{6}\right)^x=\left(5+2\sqrt{6}\right)^2=\left(\frac{1}{5-2\sqrt{6}}\right)^2\)
\(\Leftrightarrow x=-2\)
+) Với \(a=5-2\sqrt{6}\Rightarrow\sqrt{\left(5-2\sqrt{6}\right)^x}=5-2\sqrt{6}\)
\(\Leftrightarrow\left(5-2\sqrt{6}\right)^x=\left(5-2\sqrt{6}\right)^2\)
\(\Leftrightarrow x=2\)
Vậy \(x\in\left\{-2,2\right\}\) thỏa mãn đề.
\(\left(5-2\sqrt{6}\right)^{\frac{x}{2}}+\left(5+2\sqrt{6}\right)^{\frac{x}{2}}=10\)
\(pt\Leftrightarrow\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^{2x}}+\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^{2x}}=10\)
\(\Leftrightarrow\left(\sqrt{3}-\sqrt{2}\right)^x+\left(\sqrt{3}+\sqrt{2}\right)^x=10\)
\(\Leftrightarrow\frac{1}{\left(\sqrt{3}+\sqrt{2}\right)^x}+\left(\sqrt{3}+\sqrt{2}\right)^x=10\)
\(\Leftrightarrow\frac{1}{t}+t=10\left(t=\left(\sqrt{3}+\sqrt{2}\right)^x\right)\)
\(\Leftrightarrow t^2-10t+1=0\)\(\Leftrightarrow t=5\pm2\sqrt{6}\)
\(\Rightarrow5\pm2\sqrt{6}=\left(\sqrt{3}+\sqrt{2}\right)^x\)
\(\Leftrightarrow\left(\sqrt{3}+\sqrt{2}\right)^{\pm2}=\left(\sqrt{3}+\sqrt{2}\right)^x\)
\(\Rightarrow x=\pm2\). Vậy...
c) (d tương tự)
\(\sqrt[3]{7-16x}=a;\text{ }\sqrt{2x+8}=b\Rightarrow a^3+8b^2=71\)
và \(a+2b=5\)
--> Thế
\(a\text{) }\sqrt{1-x^2}=y\Rightarrow x^2+y^2=1\)
Mà \(x^3+y^3=\sqrt{2}xy\Rightarrow\left(x^3+y^3\right)^2=2x^2y^2=2x^2y^2\left(x^2+y^2\right)\text{ (*)}\)
Tới đây có dạng đẳng cấp, có thể phân tích nhân tử hoặc chia xuống.
y = 0 thì x = 1 (không thỏa pt ban đầu)
Xét y khác 0. Chia cả 2 vế của (*) cho y6:
\(\text{(*)}\Leftrightarrow\left(\frac{x^3}{y^3}+1\right)^2=2\frac{x^2}{y^2}\left(\frac{x^2}{y^2}+1\right)\)\(\Leftrightarrow\left(\frac{x}{y}-1\right)\left[\left(\frac{x}{y}\right)^5+\left(\frac{x}{y}\right)^4+\left(\frac{x}{y}\right)^3+3\left(\frac{x}{y}\right)^2+\frac{x}{y}-1\right]=0\)
Không khả quan lắm :)) bạn tự tìm cách khác nhé.
1 like tức thì nào
\(\left(\sqrt{2x+3}+2\right)\left(\sqrt{x+6}-\sqrt{x+1}\right)=5\)
\(ĐKXĐ:x\ge-1\).Nhận thấy \(\sqrt{x+6}-\sqrt{x+1}>0\)
\(\Leftrightarrow\left(\sqrt{2x+3}+2\right)\frac{\left(\sqrt{x+6}+\sqrt{x+1}\right)\left(\sqrt{x+6}-\sqrt{x+1}\right)}{\sqrt{x+6}-\sqrt{x+1}}=5\)
\(\Leftrightarrow\left(\sqrt{2x+3}+2\right)\frac{5}{\sqrt{x+6}-\sqrt{x+1}}=5\)
\(\Leftrightarrow\frac{\sqrt{2x+3}+2}{\sqrt{x+6}-\sqrt{x+1}}=1\)
\(\Leftrightarrow\sqrt{2x+3}+2-\sqrt{x+6}+\sqrt{x+1}=0\)
Th1:\(\sqrt{x+1}=2\Leftrightarrow x=3\left(thoaman\right)\)
Th2:\(\sqrt{x+1}-2\ne0\Leftrightarrow x\ne3\)
\(\Leftrightarrow\left(\sqrt{2x+3}-\sqrt{x+6}\right)+\left(2+\sqrt{x+1}\right)=0\)
\(\Leftrightarrow\frac{x-3}{\sqrt{2x+3}+\sqrt{x+6}}+\frac{x-3}{\sqrt{x+1}-2}=0\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{1}{\sqrt{2x+3}+\sqrt{x+6}}+\frac{1}{\sqrt{x+1}-2}\right)=0\)
Tự lm tiếp nha