Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hệ phương trình đề cho tương đương
\(\left\{{}\begin{matrix}\frac{1}{2}xy+18=\frac{1}{2}xy+x+y+2\\\frac{1}{2}xy-16=\frac{1}{2}xy+\frac{3}{2}x-y-3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x+y+2=18\\\frac{3}{2}x-y-3=-16\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=16\\\frac{3}{2}x-y=-13\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x+\frac{3}{2}x=3\\x+y=14\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{6}{5}\\y=\frac{74}{5}\end{matrix}\right.\)
KL: ........................
Link tham khảo: https://diendantoanhoc.net/topic/134563-gi%E1%BA%A3i-ph%C6%B0%C6%A1ng-tr%C3%ACnh-fracx-3x-23-x-3316/
Lời giải:
Ta có:
\((x+3)(x+12)(x-4)(x-16)+20x^2=0\)
\(\Leftrightarrow [(x+3)(x-16)][(x+12)(x-4)]+20x^2=0\)
\(\Leftrightarrow (x^2-13x-48)(x^2+8x-48)+20x^2=0\)
Đặt \(x^2-12x-48=a\). PT trở thành:
\((a-x)(a+20x)+20x^2=0\)
\(\Leftrightarrow a^2+19ax-20x^2+20x^2=0\Leftrightarrow a^2+19ax=0\)
\(\Leftrightarrow a(a+19x)=0\)
\(\Leftrightarrow (x^2-12x-48)(x^2+7x-48)=0\)
\(\Leftrightarrow \left[\begin{matrix} x^2-12x-48=0\\ x^2+7x-48=0\end{matrix}\right.\)
\(\Leftrightarrow \left[\begin{matrix} x=6\pm 2\sqrt{21}\\ x=\frac{-7\pm \sqrt{241}}{2}\end{matrix}\right.\)
Vậy......
\(\Rightarrow\left(x+3\right)\left(x-3\right)+6=3x\left(1-x\right)\)
\(\Rightarrow x^2-9+6=3x-3x^2\)
\(\Rightarrow4x^2-3x-3=0\)
Có: \(\Delta=\left(-3\right)^2-4.\left(-3\right).4=57>0\)
\(\Rightarrow\sqrt{\Delta}=\sqrt{57}\)
\(\Rightarrow x=\frac{3+\sqrt{57}}{8}\) hoặc \(x=\frac{3-\sqrt{57}}{8}\)
Vậy có 2 nghiệm .....
\(x\ne2\)
Áp dụng HĐT \(a^3-b^3=\left(a-b\right)^3+3ab\left(a-b\right)\)
\(\left(\frac{x-3}{x-2}\right)^3-\left(x-3\right)^3=16\)
\(\Leftrightarrow\left(\frac{\left(x-3\right)-\left(x-3\right)\left(x-2\right)}{x-2}\right)^3+\frac{3\left(x-3\right)^2}{\left(x-2\right)}\left(\frac{x-3}{x-2}-x+3\right)=16\)
\(\Leftrightarrow\left(\frac{\left(x-3\right)\left(3-x\right)}{\left(x-2\right)}\right)^3+\frac{3\left(x-3\right)^2}{x-2}\left(\frac{\left(x-3\right)\left(3-x\right)}{x-2}\right)=16\)
\(\Leftrightarrow\left(-\frac{\left(x-3\right)^2}{x-2}\right)^3-3.\left(\frac{\left(x-3\right)^2}{x-2}\right)^2=16\)
Đặt \(\frac{\left(x-3\right)^2}{x-2}=a\)
\(-a^3-3a^2=16\Leftrightarrow a^3+3a^2+16=0\Rightarrow a=-4\)
\(\Rightarrow\frac{\left(x-3\right)^2}{x-2}=-4\Leftrightarrow x^2-2x+1=0\Rightarrow x=1\)
@Nguyễn Việt Lâm