Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/
ĐK:\(-2\le x\le2\)
Đặt \(\sqrt{2+x}-2\sqrt{2-x}=t\left(t\ge0\right)\)
\(\Leftrightarrow t^2=10-3x-4\sqrt{4-x^2}\)
\(\Leftrightarrow4\sqrt{4-x^2}=10-3x-t^2\)
PT\(\Leftrightarrow3t+10-3x-t^2=10-3x\)
\(\Leftrightarrow t^2-3t=0\Leftrightarrow\left[{}\begin{matrix}t=0\\t=3\end{matrix}\right.\) (tm) => Giải x
5,\(hpt\Leftrightarrow\left\{{}\begin{matrix}x\left(x+y\right)\left(x+2\right)=0\\2\sqrt{x^2-2y-1}+\sqrt[3]{y^3-14}=x-2\end{matrix}\right.\)
Thay từng TH rồi làm nha bạn
3,\(hpt\Leftrightarrow\left\{{}\begin{matrix}x-y=\frac{1}{x}-\frac{1}{y}=\frac{y-x}{xy}\\2y=x^3+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)\left(1+\frac{1}{xy}\right)=0\\2y=x^3+1\end{matrix}\right.\)
thay nhá
Bài 1:ĐKXĐ: \(2x\ge y;4\ge5x;2x-y+9\ge0\)\(\Rightarrow2x\ge y;x\le\frac{4}{5}\Rightarrow y\le\frac{8}{5}\)
PT(1) \(\Leftrightarrow\left(x-y-1\right)\left(2x-y+3\right)=0\)
+) Với y = x - 1 thay vào pt (2):
\(\frac{2}{3+\sqrt{x+1}}+\frac{2}{3+\sqrt{4-5x}}=\frac{9}{x+10}\) (ĐK: \(-1\le x\le\frac{4}{5}\))
Anh quy đồng lên đê, chắc cần vài con trâu đó:))
+) Với y = 2x + 3...
3.
ĐKXĐ: ...
Trừ vế cho vế ta được:
\(2x-2y=y-x+\sqrt{y-2}-\sqrt{x-2}\)
\(\Leftrightarrow3\left(x-y\right)+\sqrt{x-2}-\sqrt{y-2}=0\)
\(\Leftrightarrow3\left(x-y\right)+\frac{x-y}{\sqrt{x-2}+\sqrt{y-2}}=0\)
\(\Leftrightarrow\left(x-y\right)\left(3+\frac{1}{\sqrt{x-2}+\sqrt{y-2}}\right)=0\)
\(\Leftrightarrow x=y\) (ngoặc to luôn dương)
Thay vào pt đầu:
\(2x-2=x+\sqrt{x-2}\)
\(\Leftrightarrow x-2=\sqrt{x-2}\Rightarrow\left[{}\begin{matrix}x-2=0\\x-2=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=y=2\\x=y=3\end{matrix}\right.\)