\(\left(8x-11\right)^3+\left(7x-12\right)^2+\left(23-15x\right)^3=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2019

Sửa đề \(\left(8x-11\right)^3+\left(7x-12\right)^3+\left(23-15x\right)^3=0\)

Đặt \(8x-11=a\)

\(7x-12=b\)

\(23-15x=c\)

=> a+b+c=8x-11+7x-12+23-15x=0

\(a^3+b^3+c^3-3abc\)

= \(\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)

=\(\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+2ab-ac-bc+c^2-3ab\right)\)

=0 (do a+b+c=0)

=> \(a^3+b^3+c^3=3abc\)

<=> \(0=3\left(8x-11\right)\left(7x-12\right)\left(23-15x\right)\)

=> \(\left[{}\begin{matrix}x=\frac{11}{8}\\x=\frac{12}{7}\\x=\frac{23}{15}\end{matrix}\right.\)

23 tháng 11 2022

a: =>(x^2+4x-5)(x^2+4x-21)=297

=>(x^2+4x)^2-26(x^2+4x)+105-297=0

=>x^2+4x=32 hoặc x^2+4x=-6(loại)

=>x^2+4x-32=0

=>(x+8)(x-4)=0

=>x=4 hoặc x=-8

b: =>(x^2-x-3)(x^2+x-4)=0

hay \(x\in\left\{\dfrac{1+\sqrt{13}}{2};\dfrac{1-\sqrt{13}}{2};\dfrac{-1+\sqrt{17}}{2};\dfrac{-1-\sqrt{17}}{2}\right\}\)

c: =>(x-1)(x+2)(x^2-6x-2)=0

hay \(x\in\left\{1;-2;3+\sqrt{11};3-\sqrt{11}\right\}\)

31 tháng 5 2020

a)\(\left\{{}\begin{matrix}8x+2y=4\\8x+3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1\\4x+1=2\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}y=1\\x=\frac{1}{4}\end{matrix}\right.\)b)

\(\left\{{}\begin{matrix}12x-8y=44\\12x-15y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7y=35\\4x-5y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=5\\4x-5.5=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=5\\x=7\end{matrix}\right.\)c)\(\left\{{}\begin{matrix}9x=-18\\4x+3y=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\4.\left(-2\right)+3y=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=7\end{matrix}\right.\)

31 tháng 5 2020

bạn giải câu g hộ mỉnh đc ko

3 tháng 8 2017

\(\left(x+4\right)\left(x+6\right)\left(x-2\right)\left(x-12\right)=25x^2\)

\(\Leftrightarrow\left(x+3\right)\left(x+8\right)\left(x^2-15x+24\right)=0\)

2 tháng 8 2017

\(x^4-8x^3+21x^2-24x+9=0\)

\(\Leftrightarrow\left(x^2-3x+3\right)\left(x^2-5x+3\right)=0\)

\(\Leftrightarrow\left(x-\frac{5+\sqrt{13}}{2}\right)\left(x-\frac{5-\sqrt{13}}{2}\right)=0\) (vì \(x^2-3x+3=\left(x-\frac{3}{2}\right)^2+0,75>0\))

\(\Rightarrow\orbr{\begin{cases}x=\frac{5+\sqrt{13}}{2}\\x=\frac{5-\sqrt{13}}{2}\end{cases}}\)

11 tháng 7 2017

(1) \(\Leftrightarrow\left(x+1\right)\left(\sqrt{16x+17}-x+\dfrac{23}{8}\right)=0\)

cái này đâu ra z ???

11 tháng 7 2017

nguyen van tuan: hì, xin lỗi, làm hơi tắt ^^!

\(\left(1\right)\Leftrightarrow\left(x+1\right)\sqrt{16x+17}=\left(x+1\right)\left(x-\dfrac{23}{8}\right)\Leftrightarrow\left(x+1\right)\sqrt{16x+17}-\left(x+1\right)\left(x-\dfrac{23}{8}\right)=0\Leftrightarrow\left(x+1\right)\left(\sqrt{16x+17}-x+\dfrac{23}{8}\right)=0\)

21 tháng 5 2016

i)

\(x^2-x^2\sqrt{2}-2x-2\sqrt{2}x+1+3\sqrt{2}=0\)

\(\left(x-1\right)^2+\sqrt{2}\left(x^2-2x+3\right)=0\)

\(\left(x-1\right)^2+\sqrt{2}\left(x-1\right)^2+2\sqrt{2}=0\)

\(\left(x-1\right)^2+\sqrt{2}\left(x-1\right)^2=-2\sqrt{2}\)

=> Phương trình vô nghiệm

ii)

Đặt: \(6x^2-7x=a\)

Ta có: \(a^2-2a-3=0\)

\(\left(a-3\right)\left(a+1\right)=0\)

\(\left(6x^2-7x-3\right)\left(6x^2-7x+1\right)=0\)

\(x=\frac{3}{2};-\frac{1}{3};1;\frac{1}{6}\)

21 tháng 5 2016

 Phương trình vô nghiệm

ii)

Đặt: $6x^2-7x=a$6x27x=a

Ta có: $a^2-2a-3=0$a22a3=0

$\left(a-3\right)\left(a+1\right)=0$(a3)(a+1)=0

$\left(6x^2-7x-3\right)\left(6x^2-7x+1\right)=0$(6x27x3)(6x27x+1)=0

$

13 tháng 7 2016

2) pt đề bài cho=0

<=> \(\left(x-1\right)^2\left(2x^2-x+2\right)\)=0

<=>\(\orbr{\begin{cases}x-1=0\left(1\right)\\2x^2-x+2=0\left(2\right)\end{cases}}\)

Từ 1 => x=1

từ 2 =>\(2\left(x^2-\frac{1}{2}x+1\right)\)

 =\(2\left[\left(x-\frac{1}{4}\right)^2+\frac{15}{16}\right]>0\)với mọi x

Nên pt 2 cô nghiệm

Vậy pt đề cho có nghiệm là 1

13 tháng 7 2016

1) \(x^3-3x^2+2=\left(x-1\right)\left(2^2-x+2\right)=0\)