Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đk : x >= -70
Đặt : \(\sqrt{x+70}=a\); \(\sqrt{2x^2+4x+16}=b\)
=> 6x^2+10x-92 = 3b^2 - 2a^2
pt trở thành :
3b^2 - 2a^2 + ab = 0
<=> (3b^2+3ab)-(2ab+2a^2) = 0
<=> (a+b).(3b-2a) = 0
<=> a+b=0 hoặc 3b-2a = 0
<=> a=-b hoặc 2a=3b
Đến đó bạn tự thay vào mà làm nha
Tk mk nha
5) \(ĐK:x\ge-\frac{3}{2}\)
\(x^3+4x-\left(2x+7\right)\sqrt{2x+3}=0\)
\(\Leftrightarrow\frac{x^3+4x}{2x+7}=\sqrt{2x+3}\Leftrightarrow\frac{x^3+4x}{2x+7}-3=\sqrt{2x+3}-3\)
\(\Leftrightarrow\frac{\left(x-3\right)\left(x^2+3x+7\right)}{2x+7}=\frac{2\left(x-3\right)}{\sqrt{2x+3}+3}\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{x^2+3x+7}{2x+7}-\frac{2}{\sqrt{2x+3}+3}\right)=0\)
(không có nghiệm thực)
Vậy phương trình có 1 nghiệm duy nhất là 3
1) \(Pt\Leftrightarrow-x^2-3x+10=3\sqrt{x^2+3x}\)( đk: \(x\le-3,x\ge0\)
Đặt \(t=\sqrt{x^2+3x},t\ge0\)
Pt trở thành: \(-t^2-3t+10=0\Leftrightarrow t=2\left(dot\ge0\right)\)
giải \(\sqrt{x^2+3x}=2\Leftrightarrow\orbr{\begin{cases}x=1\\x=-4\end{cases}}\)
Đặt \(\sqrt{x^2+1}=y\ge1\) pt trở thành \(\left(4x-1\right)y=2y^2-2x\)
\(4xy-y=2y^2-2x\Leftrightarrow2y^2-2x-4xy+y=0\)\(\Leftrightarrow y\left(2y+1\right)-2x\left(2y+1\right)=0\Leftrightarrow\left(2y+1\right)\left(y-2x\right)=0\Leftrightarrow y=2x\)(vì y=-1/2(loại))
\(\Leftrightarrow\sqrt{x^2+1}=2x\Leftrightarrow x=\sqrt{\frac{1}{3}}\)