Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(1) + rút y từ pt (2) thay vào pt (1), ta được pt bậc hai 1 ẩn x, dễ rồi, tìm x rồi suy ra y
(2) + (3)
+ pt nào có nhân tử chung thì đặt nhân tử chung (thật ra chỉ có pt (2) của câu 2 là có nhân từ chung)
+ trong hệ, thấy biểu thức nào giống nhau thì đặt cho nó 1 ẩn phụ
VD hệ phương trình 3: đặt a= x+y ; b= căn (x+1)
+ khi đó ta nhận được một hệ phương trình bậc nhất hai ẩn, giải hpt đó rồi suy ra x và y
a.
\(\left\{{}\begin{matrix}\left(x-1\right)^2-\left(y+1\right)^2=0\\x+3y-5=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1-y-1\right)\left(x-1+y+1\right)=0\\x+3y-5=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y-2\right)\left(x+y\right)=0\\x+3y-5=0\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}x-y-2=0\\x+3y-5=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{11}{4}\\y=\dfrac{3}{4}\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}x+y=0\\x+3y-5=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{5}{2}\\y=\dfrac{5}{2}\end{matrix}\right.\)
b.
\(\left\{{}\begin{matrix}xy-2x-y+2=0\\3x+y=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\left(y-2\right)-\left(y-2\right)=0\\3x+y=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(y-2\right)=0\\3x+y=8\end{matrix}\right.\)
TH1:
\(\left\{{}\begin{matrix}x-1=0\\3x+y=8\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=5\end{matrix}\right.\)
TH2:
\(\left\{{}\begin{matrix}y-2=0\\3x+y=8\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=2\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\left(x-y\right)^2+xy=3\left(x-y\right)\\\left(x-y\right)^2+3xy=7\left(x-y\right)^3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3\left(x-y\right)^2+3xy=9\left(x-y\right)\\\left(x-y\right)^2+3xy=7\left(x-y\right)^3\end{matrix}\right.\)
\(\Rightarrow7\left(x-y\right)^3-9\left(x-y\right)=-2\left(x-y\right)^2\)
\(\Leftrightarrow7\left(x-y\right)^3+2\left(x-y\right)^2-9\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(7\left(x-y\right)^2+2\left(x-y\right)-9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-y=0\\x-y=1\\x-y=\dfrac{-9}{7}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y=x\\y=x-1\\y=x+\dfrac{9}{7}\end{matrix}\right.\)
TH1: \(y=x\) thay vaò pt đầu:
\(x^2-x^2+x^2=3\left(x-x\right)\Rightarrow x^2=0\Rightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
TH2: \(y=x-1\) thay vào pt đầu:
\(x^2-x\left(x-1\right)+\left(x-1\right)^2=3\Leftrightarrow x^2-x-2=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2\Rightarrow y=1\\x=-1\Rightarrow y=-2\end{matrix}\right.\)
TH3: \(y=x+\dfrac{9}{7}\):
\(x^2-x\left(x+\dfrac{9}{7}\right)+\left(x+\dfrac{9}{7}\right)^2=\dfrac{-27}{7}\Leftrightarrow x^2+\dfrac{9}{7}x+\dfrac{270}{49}=0\) (vô nghiệm)
Vậy hệ đã cho có 3 cặp nghiệm:
\(\left(x;y\right)=\left(0;0\right);\left(2;1\right);\left(-1;-2\right)\)