Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x+2)(4x^2 -2x+1)+(3-2x)(9+6x+4x^2) = -4x^3+6x^2-3x+29
nha bạn chúc bạn học tốt nha
giải phương trình sau:
a, (3x+1/4)-1/3*(6x+9/5)=1
b, (5/2x+1)-(2x/1-2x)=1-(6-4x/4x^2-1)
giải hộ mk vs ạ
a, \(\left(3x+\frac{1}{4}\right)-\frac{1}{3}\left(6x+\frac{9}{5}\right)=1\)
\(3x+\frac{1}{4}-\frac{6}{3}x-\frac{3}{5}=1\)
\(x-\frac{7}{20}=1\Leftrightarrow x=\frac{27}{20}\)
b,ĐKXĐ : x \(\ne\)-1/2 ; 1/2
\(\left(\frac{5}{2x+1}\right)-\left(\frac{2x}{1-2x}\right)=1-\left(\frac{6-4x}{4x^2-1}\right)\)
\(\frac{5}{2x+1}-\frac{2x}{1-2x}=1-\frac{6-4x}{4x^2-1}\)
\(\frac{5}{2x+1}-\frac{2x}{1-2x}=1-\frac{2\left(3-2x\right)}{\left(2x+1\right)\left(2x-1\right)}\)
\(\frac{5\left(1-2x\right)\left(2x-1\right)\left(2x+1\right)}{\left(2x+1\right)^2\left(1-2x\right)\left(2x-1\right)}-\frac{2x\left(2x+1\right)^2\left(2x-1\right)}{\left(1-2x\right)\left(2x+1\right)^2\left(2x-1\right)}=\frac{\left(2x+1\right)^2\left(1-2x\right)\left(2x-1\right)}{\left(2x+1\right)^2\left(1-2x\right)\left(2x-1\right)}-\frac{2\left(3-2x\right)\left(2x+1\right)\left(1-2x\right)}{\left(2x+1\right)\left(2x-1\right)^2\left(2x-1\right)\left(1-2x\right)}\)
\(22x-5-20x^2-8x^3=18x-7-8x^3-4x^2\)
lm nốt nha,bị troll rồi ko vt đc nữa.
Bài a,b,c,e,g,i thì đặt điều kiện rồi bình phương 2 vế rồi giải, bài j chuyển vế rồi bình phương
Chỉ trình bày lời giải, tự tìm điều kiện nha :v
d) \(\sqrt{x+2\sqrt{x-1}}=2\)
\(\Leftrightarrow\sqrt{x-1+2\sqrt{x-1}+1}=2\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}=2\)
\(\Leftrightarrow\sqrt{x-1}+1=2\)
\(\Leftrightarrow\sqrt{x-1}=1\)
\(\Rightarrow x-1=1\Leftrightarrow x=2\)
f) \(\sqrt{x+4\sqrt{x-4}}=2\)
\(\Leftrightarrow\sqrt{x-4+2.2\sqrt{x-4}+4}=2\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-4}+2\right)^2}=2\)
\(\Leftrightarrow\sqrt{x-4}+2=2\)
\(\Leftrightarrow\sqrt{x-4}=0\)
\(\Rightarrow x-4=0\Leftrightarrow x=4\)
\(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=3\)
\(\Leftrightarrow\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}=3\)
\(\Leftrightarrow\left|x-1\right|+\left|x-2\right|=3\)
Ta xét 3 trường hợp :
1. Với \(x< 1\) , pt trên trở thành : \(1-x+2-x=3\Leftrightarrow2x=0\Leftrightarrow x=0\)(nhận)
2. Với \(1\le x\le2\), pt trên trở thành : \(x-1+2-x=3\Leftrightarrow1=3\)(vô lý - loại)
3. Với \(x>2\) , pt trên trở thành : \(x-1+x-2=3\Leftrightarrow2x=6\Leftrightarrow x=3\)(nhận)
Vậy tập nghiệm của phương trình : \(S=\left\{0;3\right\}\)
\(\Leftrightarrow\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}=3\)
\(\Leftrightarrow x-1+x-2=3\)
\(\Leftrightarrow2x=6\)
\(\Leftrightarrow x=2\)
Ta có: \(\sqrt{4x^2-4x+1}=\sqrt{x^2-6x+9}\)
\(\Leftrightarrow\sqrt{\left(2x-1\right)^2}=\sqrt{\left(x-3\right)^2}\)
\(\Leftrightarrow2x-1=x-3\)
\(\Leftrightarrow2x-x=-3+1\)
\(\Leftrightarrow x=-2\)
Vậy phương trình có nghiệm x=-2
\(\sqrt{4x^2-4x+1}=\sqrt{x^2-6x+9}\)
\(\Leftrightarrow\sqrt{\left(2x-1\right)^2}=\sqrt{\left(x-3\right)^2}\)
\(\Leftrightarrow\left|2x-1\right|=\left|x-3\right|\)
\(\Leftrightarrow\orbr{\begin{cases}2x-1=x-3\\2x-1=3-x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=\frac{4}{3}\end{cases}}\)