K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2020

Ta có: \(\sqrt{4x^2-4x+1}=\sqrt{x^2-6x+9}\)

\(\Leftrightarrow\sqrt{\left(2x-1\right)^2}=\sqrt{\left(x-3\right)^2}\)

\(\Leftrightarrow2x-1=x-3\)

\(\Leftrightarrow2x-x=-3+1\)

\(\Leftrightarrow x=-2\)

Vậy phương trình có nghiệm x=-2

8 tháng 2 2020

\(\sqrt{4x^2-4x+1}=\sqrt{x^2-6x+9}\)

\(\Leftrightarrow\sqrt{\left(2x-1\right)^2}=\sqrt{\left(x-3\right)^2}\)

\(\Leftrightarrow\left|2x-1\right|=\left|x-3\right|\)

\(\Leftrightarrow\orbr{\begin{cases}2x-1=x-3\\2x-1=3-x\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=\frac{4}{3}\end{cases}}\)

Đề bài là rút gọn biểu thức ạ mk ghi nhầm

(x+2)(4x^2 -2x+1)+(3-2x)(9+6x+4x^2) =  -4x^3+6x^2-3x+29

nha bạn chúc bạn học tốt nha 

9 tháng 5 2020

a,<=> 3x+1/4-2x-3/5=1

<=> x-7/20=1

<=> x= 27/20

a, \(\left(3x+\frac{1}{4}\right)-\frac{1}{3}\left(6x+\frac{9}{5}\right)=1\)

\(3x+\frac{1}{4}-\frac{6}{3}x-\frac{3}{5}=1\)

\(x-\frac{7}{20}=1\Leftrightarrow x=\frac{27}{20}\)

b,ĐKXĐ : x \(\ne\)-1/2 ; 1/2 

 \(\left(\frac{5}{2x+1}\right)-\left(\frac{2x}{1-2x}\right)=1-\left(\frac{6-4x}{4x^2-1}\right)\)

\(\frac{5}{2x+1}-\frac{2x}{1-2x}=1-\frac{6-4x}{4x^2-1}\)

\(\frac{5}{2x+1}-\frac{2x}{1-2x}=1-\frac{2\left(3-2x\right)}{\left(2x+1\right)\left(2x-1\right)}\)

\(\frac{5\left(1-2x\right)\left(2x-1\right)\left(2x+1\right)}{\left(2x+1\right)^2\left(1-2x\right)\left(2x-1\right)}-\frac{2x\left(2x+1\right)^2\left(2x-1\right)}{\left(1-2x\right)\left(2x+1\right)^2\left(2x-1\right)}=\frac{\left(2x+1\right)^2\left(1-2x\right)\left(2x-1\right)}{\left(2x+1\right)^2\left(1-2x\right)\left(2x-1\right)}-\frac{2\left(3-2x\right)\left(2x+1\right)\left(1-2x\right)}{\left(2x+1\right)\left(2x-1\right)^2\left(2x-1\right)\left(1-2x\right)}\)

\(22x-5-20x^2-8x^3=18x-7-8x^3-4x^2\)

lm nốt nha,bị troll rồi ko vt đc nữa.

9 tháng 10 2017

Bài a,b,c,e,g,i thì đặt điều kiện rồi bình phương 2 vế rồi giải, bài j chuyển vế rồi bình phương

Chỉ trình bày lời giải, tự tìm điều kiện nha :v

d) \(\sqrt{x+2\sqrt{x-1}}=2\)

\(\Leftrightarrow\sqrt{x-1+2\sqrt{x-1}+1}=2\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}=2\)

\(\Leftrightarrow\sqrt{x-1}+1=2\)

\(\Leftrightarrow\sqrt{x-1}=1\)

\(\Rightarrow x-1=1\Leftrightarrow x=2\)

f) \(\sqrt{x+4\sqrt{x-4}}=2\)

\(\Leftrightarrow\sqrt{x-4+2.2\sqrt{x-4}+4}=2\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-4}+2\right)^2}=2\)

\(\Leftrightarrow\sqrt{x-4}+2=2\)

\(\Leftrightarrow\sqrt{x-4}=0\)

\(\Rightarrow x-4=0\Leftrightarrow x=4\)

17 tháng 7 2016

\(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=3\)

\(\Leftrightarrow\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}=3\)

\(\Leftrightarrow\left|x-1\right|+\left|x-2\right|=3\)

Ta xét 3 trường hợp : 

1. Với \(x< 1\) , pt trên trở thành : \(1-x+2-x=3\Leftrightarrow2x=0\Leftrightarrow x=0\)(nhận)

2. Với \(1\le x\le2\), pt trên trở thành : \(x-1+2-x=3\Leftrightarrow1=3\)(vô lý - loại)

3. Với \(x>2\) , pt trên trở thành : \(x-1+x-2=3\Leftrightarrow2x=6\Leftrightarrow x=3\)(nhận)

Vậy tập nghiệm của phương trình : \(S=\left\{0;3\right\}\)

17 tháng 7 2016

\(\Leftrightarrow\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}=3\)

\(\Leftrightarrow x-1+x-2=3\)

\(\Leftrightarrow2x=6\)

\(\Leftrightarrow x=2\)