Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) Ta có: \(\frac{4}{5}x-3=\frac{1}{5}x\left(4x-15\right)\)
\(\Leftrightarrow\frac{4x}{5}-3=\frac{4x^2}{5}-3x\)
\(\Leftrightarrow\frac{12x}{15}-\frac{45}{15}-\frac{12x^2}{15}+\frac{45x}{15}=0\)
Suy ra: \(12x-45-12x^2+45x=0\)
\(\Leftrightarrow-12x^2+57x-45=0\)
\(\Leftrightarrow-12x^2+12x+45x-45=0\)
\(\Leftrightarrow-12x\left(x-1\right)+45\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(-12x+45\right)=0\)
\(\Leftrightarrow-3\left(x-1\right)\left(4x-15\right)=0\)
mà \(-3\ne0\)
nên \(\left[{}\begin{matrix}x-1=0\\4x-15=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\4x=15\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\frac{15}{4}\end{matrix}\right.\)
Vậy: Tập nghiệm \(S=\left\{1;\frac{15}{4}\right\}\)
b) Ta có: \(\left(x-3\right)-\frac{\left(x-3\right)\left(2x-5\right)}{6}=\frac{\left(x-3\right)\left(3-x\right)}{4}\)
\(\Leftrightarrow\left(x-3\right)-\frac{\left(x-3\right)\left(2x-5\right)}{6}+\frac{\left(x-3\right)^2}{4}=0\)
\(\Leftrightarrow\frac{12\left(x-3\right)}{12}-\frac{2\left(x-3\right)\left(2x-5\right)}{12}+\frac{3\left(x-3\right)^2}{12}=0\)
Suy ra: \(12\left(x-3\right)-2\left(2x^2-11x+15\right)+3\left(x^2-6x+9\right)=0\)
\(\Leftrightarrow12x-36-4x^2+22x-30+3x^2-18x+27=0\)
\(\Leftrightarrow-x^2+16x-39=0\)
\(\Leftrightarrow-\left(x^2-16x+39\right)=0\)
\(\Leftrightarrow x^2-13x-3x+39=0\)
\(\Leftrightarrow x\left(x-13\right)-3\left(x-13\right)=0\)
\(\Leftrightarrow\left(x-13\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-13=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=13\\x=3\end{matrix}\right.\)
Vậy: Tập nghiệm S={3;13}
c) Ta có: \(\frac{\left(3x+1\right)\left(3x-2\right)}{3}+5\left(3x+1\right)=\frac{2\left(2x+1\right)\left(3x+1\right)}{3}+2x\left(3x+1\right)\)
\(\Leftrightarrow\frac{9x^2-3x-2}{3}+5\left(3x+1\right)-\frac{12x^2+10x+2}{3}-2x\left(3x+1\right)=0\)
\(\Leftrightarrow\frac{9x^2-3x-2-12x^2-10x-2}{3}-6x^2+13x+5=0\)
\(\Leftrightarrow\frac{-3x^2-13x-4}{3}+\frac{3\left(-6x^2+13x+5\right)}{3}=0\)
Suy ra: \(-3x^2-13x-4-18x^2+39x+15=0\)
\(\Leftrightarrow-21x^2+26x+11=0\)
\(\Leftrightarrow-21x^2-7x+33x+11=0\)
\(\Leftrightarrow-7x\left(3x+1\right)+11\left(3x+1\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(-7x+11\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+1=0\\-7x+11=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-1\\-7x=-11\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1}{3}\\x=\frac{11}{7}\end{matrix}\right.\)
Vậy: Tập nghiệm \(S=\left\{-\frac{1}{3};\frac{11}{7}\right\}\)
mình làm câu cuối thôi nhé , những câu còn lại bạn tự làm đi , dễ mà :)))) chỉ cần quy đồng mẫu lên là được
\(=\frac{x+1}{58}+1+\frac{x+2}{57}+1=\frac{x+3}{56}+1+\frac{x+4}{55}\)
\(=\frac{x+59}{58}+\frac{x+59}{57}=\frac{x+59}{56}+\frac{x+59}{55}\)
\(=\frac{x+59}{58}+\frac{x+59}{57}-\frac{x+59}{56}-\frac{x+59}{55}=0\)
\(=\left(x+59\right)\left(\frac{1}{58}+\frac{1}{57}-\frac{1}{56}-\frac{1}{55}\right)=0\)
Vì \(\left(\frac{1}{58}+\frac{1}{57}-\frac{1}{56}-\frac{1}{55}\right)\) luôn khác 0
<=> x + 59 = 0
<=> x=-59
ĐKXĐ : \(\hept{\begin{cases}x-2\ne0\\3-4x\ne0\end{cases}\Rightarrow\hept{\begin{cases}x\ne2\\x\ne\frac{3}{4}\end{cases}}}\)
\(\frac{5}{x-2}+\frac{6}{3-4x}=0\)
\(\frac{5\left(3-4x\right)}{\left(x-2\right)\left(3-4x\right)}+\frac{6\left(x-2\right)}{\left(3-4x\right)\left(x-2\right)}=0\)
\(15-20x+6x-12=0\)
\(3-14x=0\Leftrightarrow14x=3\Leftrightarrow x=\frac{3}{14}\)theo ĐKXĐ : x thỏa mãn
a) \(pt\Leftrightarrow\frac{6}{x^2+2}-1+\frac{7}{x^2+3}-1+\frac{12}{x^2+8}-1-\frac{3x^2+16}{x^2+10}+2=0\)
\(\Leftrightarrow\frac{4-x^2}{x^2+2}+\frac{4-x^2}{x^2+3}+\frac{4-x^2}{x^2+8}+\frac{4-x^2}{x^2+10}=0\)
\(\Leftrightarrow\left(4-x^2\right)\left(\frac{1}{x^2+2}+\frac{1}{x^2+3}+\frac{1}{x^2+8}+\frac{1}{x^2+10}\right)=0\)
\(\Leftrightarrow4-x^2=0\)(do \(\frac{1}{x^2+2}+\frac{1}{x^2+3}+\frac{1}{x^2+8}+\frac{1}{x^2+10}>0,\forall x\))
\(\Leftrightarrow x^2=4\Leftrightarrow x=\pm2\)
\(KL...\)
2x(8x - 1)2(4x - 1) = 9
<=> 512x4 - 256x3 + 40x2 - 2x = 9
<=> 512x4 - 256x3 + 40x2 - 2x - 9 = 0
<=> (2x - 1)(4x + 1)(64x4 - 16x + 9) = 0
vì 64x4 - 16x + 9 khác 0 nên:
<=> 2x - 1 = 0 hoặc 4x + 1 = 0
<=> x = 1/2 hoặc x = -1/4
câu a tự quy đồng cùng mẫu rồi làm thôi :"))
b) \(\left[x.\left(x-1\right)\right].\left[\left(x-2\right).\left(x+1\right)\right]=24\)
\(\Leftrightarrow\left(x^2-x\right).\left(x^2-x-2\right)=24\)
Đặt \(x^2-x=k\), ta có:
\(k.\left(k-2\right)=24\)
\(\Leftrightarrow k^2-2k+1=25\)
\(\Leftrightarrow\left(k-1\right)^2=5^2\Leftrightarrow\orbr{\begin{cases}k-1=5\\k-1=-5\end{cases}\Leftrightarrow\orbr{\begin{cases}k=6\\k=-4\end{cases}}}\)
\(k=6\Rightarrow x^2-x=6\Rightarrow x^2-x-6=0\)
\(\Rightarrow x^2-3x+2x-6=0\Rightarrow x.\left(x-3\right)+2.\left(x-3\right)=0\)
\(\Rightarrow\left(x+2\right).\left(x-3\right)=0\Rightarrow\orbr{\begin{cases}x=-2\\x=3\end{cases}}\)
\(k=-4\Rightarrow x^2-x+4=0\Rightarrow x^2-x+\frac{1}{4}+\frac{15}{4}=0\Rightarrow\left(x-\frac{1}{2}\right)^2=-\frac{15}{4}\left(\text{loại}\right)\)
c)\(x^4+2x^3+5x^2+4x-12=0\)
\(\Leftrightarrow x^4+2x^3+2x^2+4x+3x^2-12=0\)
\(\Leftrightarrow x^3.\left(x+2\right)+2x.\left(x+2\right)+3.\left(x^2-2^2\right)=0\)
\(\Leftrightarrow\left(x+2\right).\left(x^3+5x-6\right)=0\)
\(\Leftrightarrow\left(x+2\right).\left(x^3-x^2+x^2-x+6x-6\right)=0\)
\(\Leftrightarrow\left(x+2\right).\left[x^2.\left(x-1\right)+x.\left(x-1\right)+6.\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(x+2\right).\left(x-1\right).\left(x^2+x+6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=1\end{cases}\text{vì }x^2+x+6>0\left(\text{tự c/m}\right)}\)
p/s: bn tự kết luận nha :))
Câu 1 :
- Gọi chiều dài miếng đất là x ( m, x > 6 )
=> Chiều rộng miếng đất là : x - 6 ( m )
=> Chu vi miếng đất đó là : \(2\left(x+x-6\right)\) ( m )
Theo đề bài chu vi mảnh đất đó là 60m nên ta có phương trình :
\(2\left(x+x-6\right)=60\)
=> \(2x-6=30\)
=> \(2x=24\)
=> \(x=12\) ( TM )
Mà diện tích mảnh đất là : \(x\left(x-6\right)\)
=> Smảnh đất = \(12\left(12-6\right)=12.6=72\left(m^2\right)\)
\(x\ne0\)
\(\frac{2x+1}{x^2}+1+\frac{x^2}{2\left(3x^2+4x+2\right)}-\frac{1}{2}=0\)
\(\Leftrightarrow\frac{x^2+2x+1}{x^2}-\frac{2\left(x^2+2x+1\right)}{2\left(3x^2+4x+2\right)}=0\)
\(\Leftrightarrow\left(x+1\right)^2\left(\frac{1}{x^2}-\frac{1}{3x^2+4x+2}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x^2=3x^2+4x+2\end{matrix}\right.\) \(\Rightarrow x=-1\)