K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 8 2020

ĐKXĐ: \(x\ne\left\{-1;-\frac{1}{2};2\right\}\)

\(\Leftrightarrow\left(2x+1\right)\left(x-2\right)+3\left(x+1\right)\left(x-2\right)=8\left(x+1\right)\left(2x+1\right)\)

\(\Leftrightarrow11x^2+30x+16=0\Rightarrow\left[{}\begin{matrix}x=-\frac{8}{11}\\x=-2\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
27 tháng 11 2019

Lời giải:
Đặt $2^x=a; 3^{\frac{1}{x}}=b$. PT đã cho tương đương với:

\((2^x)^3+(3^{\frac{1}{x}})^3+2.2^x.3.3^{\frac{1}{x}}+2^x.3^2.3^{\frac{1}{x}}=125\)

\(\Leftrightarrow a^3+b^3+6ab+9ab=125\)

\(\Leftrightarrow a^3+b^3+15ab-125=0\)

\(\Leftrightarrow (a+b)^3-3ab(a+b)+15ab-5^3=0\)

\(\Leftrightarrow (a+b)^3-5^3-3ab(a+b-5)=0\)

\(\Leftrightarrow (a+b-5)[(a+b)^2+5(a+b)+25-3ab]=0\)

\(\Rightarrow \left[\begin{matrix} a+b-5=0\\ a^2+b^2+25-2ab+5a+5b=0\end{matrix}\right.\)

Nếu $a+b-5=0$

$\Leftrightarrow 2^x+3^{\frac{1}{x}}=5$

Hiển nhiên PT có nghiệm $x=1$. Còn 1 nghiệm nữa là nghiệm vô tỷ. Mình nghĩ với kiến thức lớp 9 mà không có thêm điều kiện ràng buộc của $x$ thì rất khó để giải.

Nếu $a^2+b^2+25-2ab+5a+5b=0$

$\Leftrightarrow \frac{(a-b)^2+(a+5)^2+(b+5)^2}{2}=0$

$\Rightarrow (a-b)^2=(a+5)^2=(b+5)^2=0$

$\Rightarrow a=b=-5$ (vô lý vì $2^x, 3^{\frac{1}{x}}$ luôn dương với mọi $x$)

22 tháng 11 2019

@Nguyễn Việt Lâm bài pt này em giải mãi mak ch ra, nên anh giúp em nhé !!!

18 tháng 8 2015

\(\frac{3x-1}{x-1}-\frac{2x-5}{x+3}+\frac{4}{x^2+2x-3}=1\)

\(\frac{3x-1}{x-1}-\frac{2x-5}{x+3}+\frac{4}{\left(x+1\right)^2-4}=1\)

\(\frac{3x-1}{x-1}-\frac{2x-5}{x+3}+\frac{4}{\left(x+1+2\right)\left(x+1-2\right)}=1\)

\(\frac{3x-1}{x-1}-\frac{2x-5}{x+3}+\frac{4}{\left(x+3\right)\left(x-1\right)}=1\)

ĐKXĐ: x \(\ne\) 1 và x \(\ne\) - 3

\(\left(3x-1\right)\left(x+3\right)-\left(2x-5\right)\left(x-1\right)+4=\left(x+3\right)\left(x-1\right)\)

3x2 + 9x - x - 3 - 2x2 + 2x + 5x - 5 + 4 = x2 - x + 3x - 3

3x2 + 9x - x - 3 - 2x2 + 2x + 5x - 5 + 4 - x2 + x - 3x + 3 = 0

13x - 1 = 0

x = \(\frac{1}{13}\)

12 tháng 2 2017

chính là 1/13 

nếu đúng thì

1 tháng 4 2020

\(\frac{2x}{x+1}+\frac{18}{x^2+2x-3}=\frac{2x-5}{x+3}ĐKXĐ:x\ne-1;-3\)

\(\frac{2x}{x+1}+\frac{18}{\left(x-1\right)\left(x+3\right)}=\frac{2x-5}{x+3}\)

\(2x\left(x-1\right)\left(x+3\right)+18\left(x+1\right)=\left(2x-5\right)\left(x+1\right)\left(x-1\right)\)

\(4x^2+12x+18=-2x-5x^2+5\)

\(4x^2+12x+18+2x+5x^2-5=0\)

\(9x^2-14x+13=0\)

=> vô nghiệm

28 tháng 9 2015

a/ \(\Rightarrow x^2+9x=7\left(x+3\right)^2\)

\(\Rightarrow x^2+9x=7x^2+42x+63\).

\(\Rightarrow6x^2+33x+63=0\)

Có denta = 332 - 4.6.63 = -423 < 0 

=> pt vô nghiệm 

Vậy k có giá trị nào của x thỏa mãn biểu thức => \(x\in\phi\)

28 tháng 9 2015

b) ĐK : ........

 PT đã cho tương đương với :

\(\frac{3}{x-4+\frac{1}{x}}+\frac{2}{x+1+\frac{1}{x}}=\frac{8}{3}\)

Đặt  x + 1/x + 1 = a 

pt <=> \(\frac{3}{a-5}+\frac{2}{a}=\frac{8}{3}\)

giải pt với ẩn a 

5 tháng 11 2018

ĐKXĐ : x\(\ge0\)

ADBĐT BCS ta được

\(\left(\frac{x^2}{3}+4\right)\left(3+1\right)\ge\left(x+2\right)^2\)

\(\Rightarrow4\sqrt{\frac{x^2}{3}+4}\ge2x+4\)(do x\(\ge0\))    (1)

Do x\(\ge0\)nên ADBĐT Cauchy ta được:

\(\sqrt{6x}\le\frac{x+6}{2}\)\(\Rightarrow1+\frac{3x}{2}+\sqrt{6x}\le1+\frac{3x}{2}+\frac{x+6}{2}=1+\frac{4x+6}{2}=2x+4\)(2)

Từ (1) và (2) \(\Rightarrow4\sqrt{\frac{x^2}{3}+4}\ge1+\frac{3x}{2}+\sqrt{6x}\)

Dấu = xảy ra \(\Leftrightarrow x=6\)(thỏa mãn ĐKXĐ)

6 tháng 11 2018

3) ĐKXĐ \(-1\le x\le1\)

Khi đó phương trình đã cho \(\Leftrightarrow4\left(\sqrt{1+x}+\sqrt{1-x}\right)=8-x^2\)

\(\Leftrightarrow\hept{\begin{cases}16\left(2+2\sqrt{1-x^2}\right)=\left(7+1-x^2\right)\left(2\right)\\8-x^2\ge0\end{cases}}\)

Đặt \(\sqrt{1-x^2}=a\ge0\)

Khi đó phương trình (2) trở thành: 

\(\hept{\begin{cases}16\left(2+2a\right)=\left(7+a^2\right)\\x^2\le8\end{cases}}\)

\(\Leftrightarrow a^4+14a^2+49=32+32a\)

\(\Leftrightarrow a^4+14a^2-32a+17=0\)

\(\Leftrightarrow a^4-2a^2+1+16a^2-32a+16=0\)

\(\Leftrightarrow\left(a^2-1\right)^2+16\left(a-1\right)^2=0\)

\(\Leftrightarrow a=1\)

hay \(\sqrt{1-x^2}=1\)

\(\Leftrightarrow x=0\)(thỏa mãn)

30 tháng 8 2017

Áp dụng phương pháp tập thể dục

\(2-\frac{x-1}{x}=\left(\frac{\sqrt[3]{2x^2+x^3}+x+2}{2x+1}\right)^2\)

\(\Leftrightarrow\frac{x+1}{x}=\frac{\sqrt[3]{\left(2x^2+x^3\right)^2}+2\left(x+2\right)\sqrt[3]{2x^2+x^3}+\left(x+2\right)^2}{\left(2x+1\right)^2}\)

\(\Leftrightarrow\sqrt[3]{\left(2x^2+x^3\right)^2}+2\left(x+2\right)\sqrt[3]{2x^2+x^3}+\left(x+2\right)^2-\frac{\left(x+1\right)\left(2x+1\right)^2}{x}=0\)

\(\Leftrightarrow\left(\sqrt[3]{\left(2x^2+x^3\right)^2}-1\right)+2\left(x+2\right)\left(\sqrt[3]{2x^2+x^3}-1\right)+1+2\left(x+2\right)+\left(x+2\right)^2-\frac{\left(x+1\right)\left(2x+1\right)^2}{x}=0\)

\(\Leftrightarrow\frac{\left(x^2+x-1\right)\left(x^4+3x^3+2x^2+x+1\right)}{\sqrt[3]{\left(2x^2+x^3\right)^4}+\sqrt[3]{\left(2x^2+x^3\right)^2}+1}+\frac{2\left(x+2\right)\left(x+1\right)\left(x^2+x-1\right)}{\sqrt[3]{\left(2x^2+x^3\right)^2}+\sqrt[3]{2x^2+x^3}+1}+\frac{\left(1-3x\right)\left(x^2+x-1\right)}{x}=0\)

\(\Leftrightarrow\left(x^2+x-1\right)\left(\frac{\left(x^4+3x^3+2x^2+x+1\right)}{\sqrt[3]{\left(2x^2+x^3\right)^4}+\sqrt[3]{\left(2x^2+x^3\right)^2}+1}+\frac{2\left(x+2\right)\left(x+1\right)}{\sqrt[3]{\left(2x^2+x^3\right)^2}+\sqrt[3]{2x^2+x^3}+1}+\frac{\left(1-3x\right)}{x}\right)=0\)

\(\Leftrightarrow x^2+x-1=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-1+\sqrt{5}}{2}\\x=\frac{-1-\sqrt{5}}{2}\end{cases}}\)

30 tháng 8 2017

@@ hoa mắt alibaba nguyễn

22 tháng 6 2016

\(\frac{\left(x+4\right)\left(x-2\right)}{x^2-2x+3}=\left(x+1\right)\frac{x+2-4}{\sqrt{x+2}+2}\)

\(\left(x-2\right)\left(\frac{x+4}{x^2-2x+3}-\frac{x+1}{\sqrt{x+2}+2}\right)=0\)

+ x=2

+ chiu kho lam cai con lai