K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 9 2021

a.

ĐKXĐ: \(x\ne\dfrac{\pi}{2}+k\pi\)

Chia 2 vế cho cosx:

\(tanx+1=\dfrac{1}{cos^2x}\)

\(\Rightarrow tanx+1=1+tan^2x\)

\(\Rightarrow\left[{}\begin{matrix}tanx=0\\tanx=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=\dfrac{\pi}{4}+k\pi\end{matrix}\right.\)

NV
19 tháng 9 2021

c.

\(\Leftrightarrow2sin2x+2sin^2x=1\)

\(\Leftrightarrow2sin2x=1-2sin^2x\)

\(\Leftrightarrow2sin2x=cos2x\)

\(\Rightarrow tan2x=\dfrac{1}{2}\)

\(\Rightarrow2x=arctan\left(\dfrac{1}{2}\right)+k\pi\)

\(\Rightarrow x=\dfrac{1}{2}arctan\left(\dfrac{1}{2}\right)+\dfrac{k\pi}{2}\)

NV
8 tháng 9 2020

Đặt \(sinx+cosx=\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=t\) \(\Rightarrow2sinx.cosx=t^2-1\)

Do \(x\in\left[0;\frac{\pi}{2}\right]\Rightarrow x+\frac{\pi}{4}\in\left[\frac{\pi}{4};\frac{3\pi}{4}\right]\) \(\Rightarrow\frac{\sqrt{2}}{2}\le sin\left(x+\frac{\pi}{4}\right)\le1\)

\(\Rightarrow1\le t\le\sqrt{2}\)

Pt trở thành: \(m\left(t+1\right)=t^2\Leftrightarrow m=\frac{t^2}{t+1}\)

Xét \(f\left(t\right)=\frac{t^2}{t+1}\) trên \(\left[1;\sqrt{2}\right]\)

\(f\left(t\right)-\frac{1}{2}=\frac{t^2}{t+1}-\frac{1}{2}=\frac{\left(t-1\right)\left(2t+1\right)}{2\left(t+1\right)}\ge0\Rightarrow f\left(t\right)\ge\frac{1}{2}\)

\(f\left(t\right)-2\sqrt{2}+2=\frac{t^2}{t+1}-2\sqrt{2}+2=\frac{\left(t-\sqrt{2}\right)\left(t+2-\sqrt{2}\right)}{t+1}\le0\Rightarrow f\left(t\right)\le2\sqrt{2}-2\)

\(\Rightarrow\frac{1}{2}\le m\le2\sqrt{2}-2\)

3 tháng 7 2019

Giải phương trình lượng giác,1 + tanx = 2căn2.sinx,[sin^2x(sinx - 1)] : (sinx + cosx) = 4cos^2(x/2),Toán học Lớp 11,bài tập Toán học Lớp 11,giải bài tập Toán học Lớp 11,Toán học,Lớp 11

3 tháng 7 2019

Giải phương trình lượng giác,1 + tanx = 2căn2.sinx,[sin^2x(sinx - 1)] : (sinx + cosx) = 4cos^2(x/2),Toán học Lớp 11,bài tập Toán học Lớp 11,giải bài tập Toán học Lớp 11,Toán học,Lớp 11

NV
7 tháng 10 2019

\(\Leftrightarrow1+2sinx.cosx-\left(sinx+cosx\right)=0\)

\(\Leftrightarrow sin^2x+cos^2x+2sinx.cosx-\left(sinx+cosx\right)=0\)

\(\Leftrightarrow\left(sinx+cosx\right)^2-\left(sinx+cosx\right)=0\)

\(\Leftrightarrow\left(sinx+cosx\right)\left(sinx+cosx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx+cosx=0\\sinx+cosx=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x+\frac{\pi}{4}\right)=0\\sin\left(x+\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{4}=k\pi\\x+\frac{\pi}{4}=\frac{\pi}{4}+k2\pi\\x+\frac{\pi}{4}=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{4}+k\pi\\x=k2\pi\\x=\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

9 tháng 10 2019

thank bạn nhiều

=>(cosx+sinx)-2*sinx*cosx*(sinx+cosx)=0

=>\(\left(sinx+cosx\right)\left(2\cdot sinx\cdot cosx-1\right)=0\)

=>\(\sqrt{2}\cdot sin\left(x+\dfrac{pi}{4}\right)\cdot\left(sin2x-1\right)=0\)

=>\(\left[{}\begin{matrix}sin\left(x+\dfrac{pi}{4}\right)=0\\sin2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{pi}{4}=kpi\\sin2x=1\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=kpi-\dfrac{pi}{4}\\2x=\dfrac{pi}{2}+k2pi\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=kpi-\dfrac{pi}{4}\\x=\dfrac{pi}{4}+kpi\end{matrix}\right.\)

29 tháng 7 2019

\( a){\mathop{\rm sinx}\nolimits} + \cos x = \sqrt 2 \sin 5x\\ \Leftrightarrow \sqrt 2 .\sin \left( {x + \dfrac{\pi }{4}} \right) = \sqrt 2 .\sin 5x\\ \Leftrightarrow \sin \left( {x + \dfrac{\pi }{4}} \right) = \sin 5x\\ \Leftrightarrow \left[ \begin{array}{l} x + \dfrac{\pi }{4} = 5x + k2\pi \\ x + \dfrac{\pi }{4} = \pi - 5x + k2\pi \end{array} \right.\left( {k \in \mathbb {Z}} \right)\\ \Leftrightarrow \left[ \begin{array}{l} x = \dfrac{\pi }{{16}} + \dfrac{{k\pi }}{2}\\ x = \dfrac{\pi }{8} + \dfrac{{k\pi }}{3} \end{array} \right.\left( {k \in \mathbb{Z}} \right) \)

29 tháng 7 2019

\( b)\sqrt 3 \sin 2x + \sin \left( {\dfrac{\pi }{2} + 2x} \right) = 1\\ \Leftrightarrow \sqrt 3 \sin 2x + \sin \dfrac{\pi }{2}\cos 2x + \cos \dfrac{\pi }{2}\sin 2x = 1\\ \Leftrightarrow \sqrt 3 \sin 2x + 1.\cos 2x + 0.\sin 2x = 1\\ \Leftrightarrow \sqrt 3 \sin 2x + \cos 2x - 1 = 0\\ \Leftrightarrow 2\sqrt 3 {\mathop{\rm sinxcosx}\nolimits} + 1 - 2{\sin ^2}x - 1 = 0\\ \Leftrightarrow \sqrt 3 {\mathop{\rm sinxcosx}\nolimits} - si{n^2}x = 0\\ \Leftrightarrow {\mathop{\rm sinx}\nolimits} \left( {\sqrt 3 \cos x - {\mathop{\rm sinx}\nolimits} } \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l} {\mathop{\rm sinx}\nolimits} = 0\\ \sqrt 3 \cos x - {\mathop{\rm sinx}\nolimits} = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = k\pi \\ \sin \left( {\dfrac{\pi }{3} - x} \right) = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = k\pi \\ \dfrac{\pi }{3} - x = k\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = k\pi \\ x = \dfrac{\pi }{3} - k\pi \end{array} \right. \)

Nhiều quá @@ Tách ra đi ><

NV
8 tháng 6 2019

Đặt \(\left|sinx-cosx\right|=a\) (\(0\le a\le\sqrt{2}\))

\(\Rightarrow1-2sinx.cosx=a^2\Rightarrow1-sin2x=a^2\Rightarrow sin2x=1-a^2\)

Phương trình trở thành:

\(a+4\left(1-a^2\right)=1\Leftrightarrow-4a^2+a+3=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-\frac{3}{4}< 9\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\left|sinx-cosx\right|=1\Leftrightarrow\left|\sqrt{2}sin\left(x-\frac{\pi}{4}\right)\right|=1\)

\(\Leftrightarrow\left|sin\left(x-\frac{\pi}{4}\right)\right|=\frac{\sqrt{2}}{2}\Rightarrow\left[{}\begin{matrix}sin\left(x-\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\\sin\left(x-\frac{\pi}{4}\right)=\frac{-\sqrt{2}}{2}\end{matrix}\right.\) \(\Rightarrow...\)

NV
21 tháng 9 2021

\(\Leftrightarrow\left(\sqrt{3}+2\right)sinx+cosx=2sin3x+2sinx\)

\(\Leftrightarrow\sqrt{3}sinx+cosx=2sin3x\)

\(\Leftrightarrow\dfrac{\sqrt{3}}{2}sinx+\dfrac{1}{2}cosx=sin3x\)

\(\Leftrightarrow sin\left(x+\dfrac{\pi}{6}\right)=sin3x\)

\(\Leftrightarrow\left[{}\begin{matrix}3x=x+\dfrac{\pi}{6}+k2\pi\\3x=\dfrac{5\pi}{6}-x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow x=...\)