Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow56\left(x+1\right)+63\left(x+2\right)=72\left(x+3\right)+84\left(x+4\right)\)
\(\Leftrightarrow56\left(x+1\right)+63\left(x+2\right)-72\left(x+3\right)-84\left(x+4\right)=0\)
\(\Leftrightarrow-37x-370=0\Leftrightarrow x=-10\)
\(\frac{x+1}{9}+\frac{x+2}{8}=\frac{x+3}{7}+\frac{x+4}{6}\)
\(\Rightarrow\left(\frac{x+1}{9}+1\right)+\left(\frac{x+2}{8}+2\right)=\left(\frac{x+3}{7}+1\right)+\left(\frac{x+4}{6}+1\right)\)
\(\Rightarrow\frac{x+10}{9}+\frac{x+10}{8}-\frac{x+10}{7}-\frac{x+10}{6}=0\)
\(\Rightarrow\left(x+10\right)\left(\frac{1}{9}+\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\right)=0\)
Mà \(\frac{1}{9}+\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\ne0\)
\(\Rightarrow x+10=0\)
\(\Rightarrow x=-10\)
Vậy $x = -10$
a/\(\dfrac{8}{x-8}+1+\dfrac{11}{x-11}+1=\dfrac{9}{x-9}+1+\dfrac{10}{x-10}+1\)
=>\(\dfrac{8+x-8}{x-8}+\dfrac{11+x-11}{x-11}=\dfrac{9+x-9}{x-9}+\dfrac{10+x-10}{x-10}\)
=>\(\dfrac{x}{x-8}+\dfrac{x}{x-11}-\dfrac{x}{x-9}-\dfrac{x}{x-10}=0\)
=>x.\(\left(\dfrac{1}{x-8}+\dfrac{1}{x-11}+\dfrac{1}{x-9}+\dfrac{1}{x-10}\right)=0\)
=>x=0
b/\(\dfrac{x}{x-3}-1+\dfrac{x}{x-5}-1=\dfrac{x}{x-4}-1+\dfrac{x}{x-6}-1\)
=>\(\dfrac{x-x+3}{x-3}+\dfrac{x-x+5}{x-5}-\dfrac{x-x+4}{x-4}-\dfrac{x-6+6}{x-6}=0\)
=>\(\dfrac{3}{x-3}+\dfrac{5}{x-5}-\dfrac{4}{x-4}-\dfrac{6}{x-6}=0\)
Đến đây thì bạn giải giống câu a
a: \(\Leftrightarrow\dfrac{7x+10}{x+1}\left(x^2-x-2-2x^2+3x+5\right)=0\)
\(\Leftrightarrow\left(7x+10\right)\left(-x^2+2x+3\right)=0\)
\(\Leftrightarrow\left(7x+10\right)\cdot\left(x^2-2x-3\right)=0\)
=>(7x+10)(x-3)=0
=>x=3 hoặc x=-10/7
b: \(\Leftrightarrow\dfrac{13}{\left(2x+7\right)\left(x-3\right)}+\dfrac{1}{2x+7}-\dfrac{6}{\left(x-3\right)\left(x+3\right)}=0\)
\(\Leftrightarrow13\left(x+3\right)+x^2-9-12x-42=0\)
\(\Leftrightarrow x^2-12x-51+13x+39=0\)
\(\Leftrightarrow x^2+x-12=0\)
=>(x+4)(x-3)=0
=>x=-4
\(a,\dfrac{3\left(5x-2\right)}{4}-2=\dfrac{7x}{3}-5\left(x-7\right)\)
\(\Leftrightarrow\dfrac{15x-6-8}{4}=\dfrac{7x-15\left(x-7\right)}{3}\)
\(\Leftrightarrow\dfrac{15x-14}{4}=\dfrac{7x-15x+105}{3}\)
\(\Leftrightarrow\dfrac{45x-42}{12}=\dfrac{-32x+420}{12}\)
\(\Leftrightarrow45x+32x=420+42\)
\(\Leftrightarrow77x=462\)
\(\Leftrightarrow x=6\)
\(b,\dfrac{x+5}{2}+\dfrac{3-2x}{4}=x-\dfrac{7+x}{6}\)
\(\Leftrightarrow\dfrac{2x+10+3-2x}{4}=\dfrac{6x-7-x}{6}\)
\(\Leftrightarrow\dfrac{13}{4}=\dfrac{5x-7}{6}\)
\(\Leftrightarrow2\left(5x-7\right)=3.13\)
\(\Leftrightarrow10x-14=39\)
\(\Leftrightarrow10x=53\)
\(\Leftrightarrow x=5,3\)
\(c,\dfrac{x-3}{11}+\dfrac{x+1}{3}=\dfrac{x+7}{9}-1\)
\(\Leftrightarrow\dfrac{3x-9+11x+11}{33}=\dfrac{x+7-9}{9}\)
\(\Leftrightarrow\dfrac{14x+2}{33}=\dfrac{x-2}{9}\)
\(\Leftrightarrow33\left(x-2\right)=9\left(14x+2\right)\)
\(\Leftrightarrow33x-66=126x+18\)
\(\Leftrightarrow-93x=84\)
\(\Leftrightarrow x=-\dfrac{28}{31}\)
\(d,\dfrac{3x-0,4}{2}+\dfrac{1,5-2x}{3}=\dfrac{x+0,5}{5}\)
\(\Leftrightarrow\dfrac{3\left(3x-0,4\right)+2\left(1,5-2x\right)}{6}=\dfrac{x+0,5}{5}\)
\(\Leftrightarrow\dfrac{9x-1,2+3-4x}{6}=\dfrac{x+0,5}{5}\)
\(\Leftrightarrow\dfrac{5x+1,8}{6}=\dfrac{x+0,5}{5}\)
\(\Leftrightarrow5\left(5x+1,8\right)=6\left(x+0,5\right)\)
\(\Leftrightarrow25x+9=6x+3\)
\(\Leftrightarrow19x=-6\)
\(\Leftrightarrow x=-\dfrac{6}{19}\)
\(\Leftrightarrow77x=378\)
\(\Leftrightarrow x=\dfrac{54}{11}\)
\(\dfrac{x+1}{x-1}+\dfrac{1}{x+1}=0\\ < =>\dfrac{\left(x+1\right)^2}{x^2-1}+\dfrac{x-1}{x^2-1}=0->\left(1\right)\\ ĐKXĐ:x^2-1\ne0< =>\left[{}\begin{matrix}x-1\ne0\\x+1\ne0\end{matrix}\right.< =>\left[{}\begin{matrix}x\ne1\\x\ne-1\end{matrix}\right.\)
\(\left(1\right)=>\dfrac{\left(x+1\right)^2}{x^2-1}+\dfrac{x-1}{x^2-1}=0\\ =>\left(x+1\right)^2+\left(x-1\right)=0\\ < =>x^2+2x+1+x-1=0\\ < =>x^2+3x=0\\ < =>x\left(x+3\right)=0\\ =>\left[{}\begin{matrix}x=0\\x+3=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=0\left(TMĐK\right)\\x=-3\left(TMĐK\right)\end{matrix}\right.\)
Vậy: Tập nghiệm của pt là S= {-3;0}
\(\dfrac{x}{x-3}+\dfrac{6x}{9-x^2}=0\) (ĐKXĐ: \(x\ne\pm3\))
\(\Leftrightarrow\dfrac{-x\left(3+x\right)+6x}{9-x^2}=0\)
\(\Rightarrow-3x-x^2+6x=0\\ \Leftrightarrow x\left(-x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\-x+3=0\Leftrightarrow x=3\left(loại\right)\end{matrix}\right.\)
vậy phương trình có tập nghiệm là S={0}
2.
\(\dfrac{x+5}{2006}+\dfrac{x+4}{2007}+\dfrac{x+3}{2008}< \dfrac{x+9}{2002}+\dfrac{x+10}{2001}+\dfrac{x+11}{2000}\\ \Leftrightarrow\dfrac{x+5}{2006}+1+\dfrac{x+4}{2007}+1+\dfrac{x+3}{2008}+1< \dfrac{x+9}{2002}+1+\dfrac{x+10}{2001}+1+\dfrac{x+11}{2000}+1\\ \Leftrightarrow\dfrac{x+2011}{2006}+\dfrac{x+2011}{2007}+\dfrac{x+2011}{2008}< \dfrac{x+2011}{2002}+\dfrac{x+2011}{2001}+\dfrac{x+2011}{2000}\\ \Leftrightarrow\dfrac{x+2011}{2006}+\dfrac{x+2011}{2007}+\dfrac{x+2011}{2008}-\dfrac{x+2011}{2002}-\dfrac{x+2011}{2001}-\dfrac{x+2011}{2000}< 0\\ \Leftrightarrow\left(x+2011\right)\left(\dfrac{1}{2006}+\dfrac{1}{2007}+\dfrac{1}{2008}-\dfrac{1}{2002}-\dfrac{1}{2001}-\dfrac{1}{2000}\right)< 0\\ \Leftrightarrow\left(x+2011\right)\left(\dfrac{1}{2006}-\dfrac{1}{2002}+\dfrac{1}{2007}-\dfrac{1}{2001}+\dfrac{1}{2008}-\dfrac{1}{2000}\right)< 0\)
Vì \(\left\{{}\begin{matrix}\dfrac{1}{2006}< \dfrac{1}{2002}\\\dfrac{1}{2007}< \dfrac{1}{2001}\\\dfrac{1}{2008}< \dfrac{1}{2000}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{2006}-\dfrac{1}{2002}< 0\\\dfrac{1}{2007}-\dfrac{1}{2001}< 0\\\dfrac{1}{2008}-\dfrac{1}{2000}< 0\end{matrix}\right.\Rightarrow\left(\dfrac{1}{2006}-\dfrac{1}{2002}+\dfrac{1}{2007}-\dfrac{1}{2001}+\dfrac{1}{2008}-\dfrac{1}{2000}\right)< 0\)
\(\Rightarrow x>0\)
Vậy \(x>0\)
giải pt sau
g) 11+8x-3=5x-3+x
\(\Leftrightarrow\) 8x + 8 = 6x - 3
<=> 8x-6x = -3 - 8
<=> 2x = -11
=> x=-\(\dfrac{11}{2}\)
Vậy tập nghiệm của PT là : S={\(-\dfrac{11}{2}\)}
h)4-2x+15=9x+4-2x
<=> 19 - 2x = 7x + 4
<=> -2x - 7x = 4 - 19
<=> -9x = -15
=> x=\(\dfrac{15}{9}=\dfrac{5}{3}\)
Vậy tập nghiệm của pt là : S={\(\dfrac{5}{3}\)}
g)\(\dfrac{3x+2}{2}-\dfrac{3x+1}{6}=\dfrac{5}{3}+2x\)
<=> \(\dfrac{3\left(3x+2\right)}{6}-\dfrac{3x+1}{6}=\dfrac{5.2+6.2x}{6}\)
<=> 9x + 6 - 3x + 1 = 10 + 12x
<=> 6x + 7 = 10 + 12x
<=> 6x -12x = 10-7
<=> -6x = 3
=> x= \(-\dfrac{1}{2}\)
Vậy tập nghiệm của PT là : S={\(-\dfrac{1}{2}\)}
\(h,\dfrac{x+4}{5}-x+4=\dfrac{4x+2}{5}-5\)
<=> \(\dfrac{x+4-5\left(x+4\right)}{5}=\dfrac{4x+2-5.5}{5}\)
<=> x + 4 - 5x - 20 = 4x + 2 - 25
<=> x - 5x - 4x = 2-25-4+20
<=> -8x = -7
=> x= \(\dfrac{7}{8}\)
Vậy tập nghiệm của PT là S={\(\dfrac{7}{8}\)}
\(i,\dfrac{4x+3}{5}-\dfrac{6x-2}{7}=\dfrac{5x+4}{3}+3\)
<=> \(\dfrac{21\left(4x+3\right)}{105}\)-\(\dfrac{15\left(6x-2\right)}{105}\)=\(\dfrac{35\left(5x+4\right)+3.105}{105}\)
<=> 84x + 63 - 90x + 30 = 175x + 140 + 315
<=> 84x - 90x - 175x = 140 + 315 - 63 - 30
<=> -181x = 362
=> x = -2
Vậy tập nghiệm của PT là : S={-2}
K) \(\dfrac{5x+2}{6}-\dfrac{8x-1}{3}=\dfrac{4x+2}{5}-5\)
<=> \(\dfrac{5\left(5x+2\right)}{30}-\dfrac{10\left(8x-1\right)}{30}=\dfrac{6\left(4x+2\right)-150}{30}\)
<=> 25x + 10 - 80x - 10 = 24x + 12 - 150
<=> -55x = 24x - 138
<=> -55x - 24x = -138
=> -79x = -138
=> x=\(\dfrac{138}{79}\)
Vậy tập nghiệm của PT là S={\(\dfrac{138}{79}\)}
m) \(\dfrac{2x-1}{5}-\dfrac{x-2}{3}=\dfrac{x+7}{15}\)
<=> \(\dfrac{3\left(2x-1\right)-5\left(x-2\right)}{15}=\dfrac{x+7}{15}\)
<=> 6x - 3 - 5x + 10 = x+7
<=> x + 7 = x+7
<=> 0x = 0
=> PT vô nghiệm
Vậy S=\(\varnothing\)
n)\(\dfrac{1}{4}\left(x+3\right)=3-\dfrac{1}{2}\left(x+1\right)-\dfrac{1}{3}\left(x+2\right)\)
<=> \(\dfrac{1}{4}x+\dfrac{3}{4}=3-\dfrac{1}{2}x-\dfrac{1}{2}-\dfrac{1}{3}x-\dfrac{2}{3}\)
<=> \(\dfrac{1}{4}x+\dfrac{1}{2}x+\dfrac{1}{3}x=3-\dfrac{1}{2}-\dfrac{2}{3}-\dfrac{3}{4}\)
<=> \(\dfrac{13}{12}x=\dfrac{13}{12}\)
=> x= 1
Vậy S={1}
p) \(\dfrac{x}{3}-\dfrac{2x+1}{6}=\dfrac{x}{6}-6\)
<=> \(\dfrac{2x-2x+1}{6}=\dfrac{x-36}{6}\)
<=> 2x -2x + 1= x-36
<=> 2x-2x-x = -37
=> x = 37
Vậy S={37}
q) \(\dfrac{2+x}{5}-0,5x=\dfrac{1-2x}{4}+0,25\)
<=> \(\dfrac{4\left(2+x\right)-20.0,5x}{20}=\dfrac{5\left(1-2x\right)+20.0,25}{20}\)
<=> 8 + 4x - 10x = 5 - 10x + 5
<=> 4x-10x + 10x = 5+5-8
<=> 4x = 2
=> x= \(\dfrac{1}{2}\)
Vậy S={\(\dfrac{1}{2}\)}
g) \(11+8x-3=5x-3+x\)
\(\Leftrightarrow8+8x=6x-3\)
\(\Leftrightarrow8x-6x=-3-8\)
\(\Leftrightarrow2x=-11\)
\(\Leftrightarrow x=-\dfrac{11}{2}\)
h, \(4-2x+15=9x+4-2x\)
\(\Leftrightarrow-2x-9x+2x=4-4-15\)
\(\Leftrightarrow-9x=-15\)
\(\Leftrightarrow x=\dfrac{-15}{-9}=\dfrac{5}{3}\)
a.
\(\dfrac{1}{2}\left(x+1\right)+\dfrac{1}{4}\left(x+3\right)=3-\dfrac{1}{3}\left(x+2\right)\)
\(\Leftrightarrow\dfrac{x+1}{2}+\dfrac{x+3}{4}=3-\dfrac{x+2}{3}\)
\(\Leftrightarrow\dfrac{\left(x+1\right).6}{12}+\dfrac{\left(x+3\right).3}{12}=\dfrac{36}{12}-\dfrac{\left(x+2\right).4}{12}\)
\(\Leftrightarrow6x+6+3x+9=36-4x-8\)
\(\Leftrightarrow9x+15=28-4x\)
\(\Leftrightarrow9x+4x=28-15\)
\(\Leftrightarrow13x=13\)
\(\Leftrightarrow x=1\)
a) \(\dfrac{1}{2}\left(x+1\right)+\dfrac{1}{4}\left(x+3\right)=3-\dfrac{1}{3}\left(x+2\right)\)
\(\Leftrightarrow\dfrac{6\left(x+1\right)+3\left(x+3\right)}{12}=\dfrac{36-4\left(x+2\right)}{12}\)
\(\Leftrightarrow6\left(x+1\right)+3\left(x+3\right)=36-4\left(x+2\right)\)
\(\Leftrightarrow6x+6+3x+9=36-4x-8\)
\(\Leftrightarrow9x+15=-4x+28\)
\(\Leftrightarrow9x+4x=28-15\)
\(\Leftrightarrow13x=13\)
\(\Leftrightarrow x=1\)
Vậy ................................
d. ĐKXĐ: x khác 1, x khác 3
\(\dfrac{x+5}{x-1}=\dfrac{x+1}{\left(x-3\right)}-\dfrac{8}{x^2-4x+3}\)
\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x+5\right)}{\left(x-1\right)\left(x-3\right)}=\dfrac{\left(x+1\right)\left(x-1\right)}{\left(x-1\right)\left(x-3\right)}-\dfrac{8}{\left(x-1\right)\left(x-3\right)}\) \(\Leftrightarrow x^2+2x-15=x^2-1-8\)
\(\Leftrightarrow2x-15+1+8=0\)
\(\Leftrightarrow2x-6=0\)
\(\Leftrightarrow x=3\) (loại)
Vậy pt vô nghiệm
<=>\(\dfrac{\left(x-3\right)9}{99}+\dfrac{\left(x+1\right)33}{99}=\dfrac{\left(x+7\right)11}{99}-\dfrac{99}{99}\)
=>(x-3)9 + (x+1)33 = (x+7)11 - 99
=>9x-27+33x+33=11x+77-99
=>9x+33x-11x=27-33+77-99
=>31x=-28
=>x=\(\dfrac{-28}{31}\)
\(\dfrac{x-3}{11}+\dfrac{x+1}{3}=\dfrac{x+7}{9}-1\)
\(\Leftrightarrow\dfrac{9\left(x-3\right)+33\left(x+1\right)}{99}=\dfrac{11\left(x+7\right)-99}{99}\)
\(\Leftrightarrow9\left(x-3\right)+33\left(x+1\right)=11\left(x+7\right)-99\)
\(\Leftrightarrow9x-27+33x+33=11x+77-99\)
\(\Leftrightarrow9x+33x-11x=77-99+27-33\)
\(\Leftrightarrow31x=-28\)
\(\Leftrightarrow x=-\dfrac{28}{31}\)
Vậy phương trình có nghiệm duy nhất \(x=-\dfrac{28}{31}\)