\(\dfrac{1}{x}+\dfrac{1}{x+50}=\dfrac{1}{60}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2017

\(\dfrac{1}{x}+\dfrac{1}{x+50}=\dfrac{1}{60}\left(x\ne0;x\ne-5\right)\)

\(pt\Leftrightarrow\dfrac{x+50}{x\left(x+50\right)}+\dfrac{x}{x\left(x+50\right)}=\dfrac{1}{60}\)

\(\Leftrightarrow\dfrac{2x+50}{x\left(x+50\right)}=\dfrac{1}{60}\Leftrightarrow x\left(x+50\right)=60\left(2x+50\right)\)

\(\Leftrightarrow x^2+50x=120x+3000\)

\(\Leftrightarrow x^2-70x-3000=0\)

\(\Leftrightarrow x^2-100x+30x-3000=0\)

\(\Leftrightarrow x\left(x-100\right)+30\left(x-100\right)=0\)

\(\Leftrightarrow\left(x+30\right)\left(x-100\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+30=0\\x-100=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-30\\x=100\end{matrix}\right.\)

b: \(\Leftrightarrow\dfrac{\left(x+2\right)^2}{\left(x-1\right)\left(x+2\right)}=\dfrac{-4x^2+11x-2}{\left(x+2\right)\left(x-1\right)}\)

\(\Leftrightarrow x^2+4x+4+4x^2-11x+2=0\)

\(\Leftrightarrow5x^2-7x+6=0\)

hay \(x\in\varnothing\)

c: \(\Leftrightarrow\left(3x^2+2\right)^2-5x\left(3x^2+2\right)=0\)

=>3x^2-5x+2=0

=>3x^2-3x-2x+2=0

=>(x-1)(3x-2)=0

=>x=2/3 hoặc x=1

17 tháng 4 2018

15

\(\dfrac{7}{x-2}\)+\(\dfrac{8}{x-5}\)=3 (x khác 2 khác 5)

\(\Leftrightarrow\)7*(x-5)+8(x-2)=3(x-2)(x-5)

\(\Leftrightarrow\)15x-51=3x^2-21x+30\(\Leftrightarrow\)3x^2-36x+81=0

\(\Leftrightarrow\)\(\begin{matrix}&\end{matrix}\)\(\left[{}\begin{matrix}9\\3\end{matrix}\right.\) tmđk

16\(\dfrac{x^2-3x+6}{x^2-9}\)=\(\dfrac{1}{x-3}\)(x khác +_3)

\(\Leftrightarrow\)x^2-3x+6=x+3

\(\Leftrightarrow\)x^2-4x+3=0\(\Leftrightarrow\)\(\left[{}\begin{matrix}3loại\\1\end{matrix}\right.\)

vậy x=1 là nghiệm của pt

25 tháng 4 2018

17 \(\dfrac{3}{x^2-4}\) = \(\dfrac{1}{x-2}+\dfrac{1}{x+2}\)

<=> x + 2 + x - 2 = 3

<=> 2x = 3

<=> x = \(\dfrac{3}{2}\)

30 tháng 7 2017

\(\sqrt{x-\dfrac{1}{x}}-\sqrt{1-\dfrac{1}{x}}=\dfrac{x-1}{x}\)

\(\Leftrightarrow\dfrac{\left(x-\dfrac{1}{x}\right)-\left(1-\dfrac{1}{x}\right)}{\sqrt{x-\dfrac{1}{x}}+\sqrt{1-\dfrac{1}{x}}}-\dfrac{x-1}{x}=0\)

\(\Leftrightarrow\dfrac{x-1}{\sqrt{x-\dfrac{1}{x}}+\sqrt{1-\dfrac{1}{x}}}-\dfrac{x-1}{x}=0\)

\(\Leftrightarrow\left(x-1\right)\left(\dfrac{1}{\sqrt{x-\dfrac{1}{x}}+\sqrt{1-\dfrac{1}{x}}}-\dfrac{1}{x}\right)=0\)

Pt \(\dfrac{1}{\sqrt{x-\dfrac{1}{x}}+\sqrt{1-\dfrac{1}{x}}}-\dfrac{1}{x}=0\) vô n0

=> x - 1 = 0

<=> x = 1 (nhận)

21 tháng 9 2018

a)\(\dfrac{2}{x^2-1}+\dfrac{1}{x+1}=2\) Điều kiện:x#1,-1

\(\Leftrightarrow\dfrac{2}{\left(x+1\right)\left(x-1\right)}+\dfrac{1}{x+1}=2\\\)

\(\Leftrightarrow\dfrac{2+x-1}{\left(x+1\right)\left(x-1\right)}=2\)

\(\Leftrightarrow\dfrac{1}{x-1}=2\)

\(\Leftrightarrow1=2\left(x-1\right)\)

\(\Leftrightarrow2x=3\)

\(\Leftrightarrow x=\dfrac{3}{2}\)

b)\(1-\dfrac{12}{x^2-4}=\dfrac{3}{x+2}\) Điều kiện:x#2,-2

\(\Leftrightarrow\dfrac{x^2-4-12}{x^2-4}=\dfrac{3}{x+2}\)

\(\Leftrightarrow x^2-16=3\left(x-2\right)\)

\(\Leftrightarrow x^2-16-3x+6=0\)

\(\Leftrightarrow x^2-3x-10=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)

Vậy \(S=\left\{5\right\}\)

19 tháng 3 2017

a. Pt đã cho tương đương với:
\(\sqrt{3x-2}=\sqrt{x+7}+1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\3x-2=x+7+1+2\sqrt{x+7}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\2x-10=2\sqrt{x+7}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\x-5=\sqrt{x+7}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge5\\x^2-10x+25=x+7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge5\\x^2-11x+18=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge5\\\left(x-2\right)\left(x-9\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge5\\\left[{}\begin{matrix}x=2\\x=9\end{matrix}\right.\end{matrix}\right.\)(Loại )
\(\Leftrightarrow x=9\)
Vậy pt có nghiệm x =9

19 tháng 3 2017

b. Đk: \(x\ne1;y\ne2\)
Đặt \(\dfrac{1}{x-1}=a;\dfrac{1}{y-2}=b\)
Khi đó hệ đã cho trở thành:
\(\left\{{}\begin{matrix}a+b=2\\-3a+2b=1\end{matrix}\right.\)
Giải hệ trên tìm a,b rồi từ đó tìm được x;y. Nhớ đối chiếu với Đk trước khi kết luận.