Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow x^2+x-6+2x-6=10x-20+50\)
\(\Leftrightarrow x^2+3x-12-10x-30=0\)
\(\Leftrightarrow x^2-7x-42=0\)
\(\text{Δ}=\left(-7\right)^2-4\cdot1\cdot\left(-42\right)=217>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{7-\sqrt{217}}{2}\\x_2=\dfrac{7+\sqrt{217}}{2}\end{matrix}\right.\)
b: \(\Leftrightarrow x^2-3x+5=-x^2+4\)
\(\Leftrightarrow2x^2-3x+1=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x-1\right)=0\)
hay \(x\in\left\{\dfrac{1}{2};1\right\}\)
b: \(\Leftrightarrow\dfrac{\left(x+2\right)^2}{\left(x-1\right)\left(x+2\right)}=\dfrac{-4x^2+11x-2}{\left(x+2\right)\left(x-1\right)}\)
\(\Leftrightarrow x^2+4x+4+4x^2-11x+2=0\)
\(\Leftrightarrow5x^2-7x+6=0\)
hay \(x\in\varnothing\)
c: \(\Leftrightarrow\left(3x^2+2\right)^2-5x\left(3x^2+2\right)=0\)
=>3x^2-5x+2=0
=>3x^2-3x-2x+2=0
=>(x-1)(3x-2)=0
=>x=2/3 hoặc x=1
Đặt \(\left[{}\begin{matrix}\dfrac{1}{x}=a\\\dfrac{1}{y}=b\end{matrix}\right.\).
Ta có hệ: \(\left[{}\begin{matrix}a+b=\dfrac{1}{16}\\3a+6b=\dfrac{1}{4}\end{matrix}\right.\)
`<=>` \(\left[{}\begin{matrix}a=\dfrac{1}{24}\\b=\dfrac{1}{48}\end{matrix}\right.\)
`=>` \(\left[{}\begin{matrix}x=24\\y=48\end{matrix}\right.\)
Vậy `(x;y)=(24;48)`.
ĐKXĐ: x<>0; y<>0
\(\left\{{}\begin{matrix}\dfrac{5}{x}+\dfrac{3}{y}=1\\\dfrac{2}{x}+\dfrac{1}{y}=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{x}+\dfrac{3}{y}=1\\\dfrac{6}{x}+\dfrac{3}{y}=-3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-\dfrac{1}{x}=4\\\dfrac{2}{x}+\dfrac{1}{y}=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{4}\\\dfrac{1}{y}=-1-\dfrac{2}{x}=-1-2:\dfrac{-1}{4}=-1+8=7\end{matrix}\right.\)
=>x=-1/4 và y=1/7
ĐKXĐ: \(\left\{{}\begin{matrix}x\ne0\\y\ne0\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}a=\dfrac{1}{x}\\b=\dfrac{1}{y}\end{matrix}\right.\)
Hệ phương trình trở thành \(\left\{{}\begin{matrix}5a+3b=1\\2a+b=-1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}b=-1-2a\\5a+3\left(-1-2a\right)=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}b=-1-2a\\-a-3=1\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}a=-4\\b=-1-2.\left(-4\right)\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=-4\\b=7\end{matrix}\right.\)
Ta có: \(\left\{{}\begin{matrix}a=\dfrac{1}{x}=-4\\b=\dfrac{1}{y}=7\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{4}\left(tm\right)\\y=\dfrac{1}{7}\left(tm\right)\end{matrix}\right.\)
Vậy HPT có nghiệm \(x=-\dfrac{1}{4}\) và \(y=\dfrac{1}{7}\)
`1/x+1/(x+2)=5/12`
ĐK:`x ne 0,x ne -2`
`<=>(x+2+x)/(x^2+2x)=5/12`
`<=>(2x+2)/(x^2+2x)=5/12`
`<=>24x+24=5x^2+10x`
`<=>5x^2-14x-24=0`
Ta có:`Delta'=49+24.5`
`=49+120=169`
`=>x_1=-6/5,x_2=4`
Vậy `S={4,-6/5}`
$ĐKXĐ : x \neq 0, x \neq -2$
Ta có : $\dfrac{1}{x} + \dfrac{1}{x+2} = \dfrac{5}{12}$
$\to \dfrac{2x+2}{x.(x+2)} = \dfrac{5}{12}$
$\to (2x+2).12 = x.(x+2).5$
$\to 24x + 24 = 5x^2 + 10x$
$\to 5x^2 - 14x - 24 = 0 $
$\to (x-4).(5x+6) = 0 $
S\to$ \(\left[{}\begin{matrix}x=4\\x=-\dfrac{6}{5}\end{matrix}\right.\) ( thỏa mãn ĐKXĐ )
Vậy :....
\(ĐK:x\ge1\\ PT\Leftrightarrow x-\sqrt{x-\dfrac{1}{x}}=\sqrt{1-\dfrac{1}{x}}\\ \Leftrightarrow x^2+x-\dfrac{1}{x}-2x\sqrt{x-\dfrac{1}{x}}=1-\dfrac{1}{x}\\ \Leftrightarrow x^2+x-1=2x\sqrt{x-\dfrac{1}{x}}\\ \Leftrightarrow x^4+x^2+1+2x^3-2x-2x^2=4x^3-4x\\ \Leftrightarrow x^4-2x^3-x^2+2x+1=0\\ \Leftrightarrow\left(x^2-x-1\right)^2=0\\ \Leftrightarrow x^2-x-1=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1+\sqrt{5}}{2}\left(tm\right)\\x=\dfrac{1-\sqrt{5}}{2}\left(ktm\right)\end{matrix}\right.\)
Vậy PT có nghiệm \(x=\dfrac{1+\sqrt{5}}{2}\)
\(\dfrac{1}{x}+\dfrac{1}{x+50}=\dfrac{1}{60}\left(x\ne0;x\ne-5\right)\)
\(pt\Leftrightarrow\dfrac{x+50}{x\left(x+50\right)}+\dfrac{x}{x\left(x+50\right)}=\dfrac{1}{60}\)
\(\Leftrightarrow\dfrac{2x+50}{x\left(x+50\right)}=\dfrac{1}{60}\Leftrightarrow x\left(x+50\right)=60\left(2x+50\right)\)
\(\Leftrightarrow x^2+50x=120x+3000\)
\(\Leftrightarrow x^2-70x-3000=0\)
\(\Leftrightarrow x^2-100x+30x-3000=0\)
\(\Leftrightarrow x\left(x-100\right)+30\left(x-100\right)=0\)
\(\Leftrightarrow\left(x+30\right)\left(x-100\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+30=0\\x-100=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-30\\x=100\end{matrix}\right.\)