Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)(x-2)(x+2)(x^2-10)=72
<=>(x^2-4)(x^2-10)=72
<=>x^4-14x^2+40=72
<=>x^4-14x^2-32=0
<=>x^4-16x^2+2x^2-32=0
<=>x^2(x^2-16)+2(x^2-16)=0
<=>(x^2-16)(x^2+2)=0
<=>(x-4)(x+4)(x^2+2)=0
<=>x-4=0 hoac x+4=0 (vi x^2+2>0 voi moi x)
<=>x=4,x=-4
S={4,-4}
a)(x-2))x+2)(x^2-10)=72
=(x^2-4)(x^2-10)=72
Đặt x^2-7 là t
Phương trình trở thành (t+3)(t-3)=72
t^2-9=72
t^2=81
suy ra t= cộng trừ 9
*t=9
x^2-7=9
x^2=16
suy ra x=cộng trừ 4
*t=-9
x^2-7=-9
x^2=-2
suy ra x không xác định
vậy S={cộng trừ 4}
d: \(x\left(x+1\right)\left(x^2+x+1\right)=42\left(1\right)\)
=>\(\left(x^2+x\right)\left(x^2+x+1\right)=42\)
Đặt \(a=x^2+x\)
Phương trình (1) sẽ trở thành \(a\left(a+1\right)=42\)
=>\(a^2+a-42=0\)
=>(a+7)(a-6)=0
=>\(\left(x^2+x+7\right)\left(x^2+x-6\right)=0\)
mà \(x^2+x+7=\left(x+\dfrac{1}{2}\right)^2+\dfrac{27}{4}>0\forall x\)
nên \(x^2+x-6=0\)
=>(x+3)(x-2)=0
=>\(\left[{}\begin{matrix}x+3=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)
e: \(\left(x-1\right)\left(x-3\right)\left(x+5\right)\left(x+7\right)-297=0\left(2\right)\)
=>\(\left(x-1\right)\left(x+5\right)\left(x-3\right)\left(x+7\right)-297=0\)
=>\(\left(x^2+4x-5\right)\left(x^2+4x-21\right)-297=0\)
Đặt \(b=x^2+4x\)
Phương trình (2) sẽ trở thành \(\left(b-5\right)\left(b-21\right)-297=0\)
=>\(b^2-26b+105-297=0\)
=>\(b^2-26b-192=0\)
=>(b-32)(b+6)=0
=>\(\left(x^2+4x-32\right)\left(x^2+4x+6\right)=0\)
mà \(x^2+4x+6=\left(x+2\right)^2+2>0\forall x\)
nên \(x^2+4x-32=0\)
=>(x+8)(x-4)=0
=>\(\left[{}\begin{matrix}x+8=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-8\\x=4\end{matrix}\right.\)
f: \(x^4-2x^2-144x-1295=0\)
=>\(x^4-7x^3+7x^3-49x^2+47x^2-329x+185x-1295=0\)
=>\(\left(x-7\right)\cdot\left(x^3+7x^2+47x+185\right)=0\)
=>\(\left(x-7\right)\left(x+5\right)\left(x^2+2x+37\right)=0\)
mà \(x^2+2x+37=\left(x+1\right)^2+36>0\forall x\)
nên (x-7)(x+5)=0
=>\(\left[{}\begin{matrix}x-7=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-5\end{matrix}\right.\)
Lời giải:
Đặt $(x-3)^2=a$. Khi đó pt đã cho tương đương với:
$(x^2-6x+9-9)^2+13(x-3)^2-77=0$
$\Leftrightarrow [(x-3)^2-9]^2+13(x-3)^2-77=0$
$\Leftrightarrow (a-9)^2+13a-77=0$
$\Leftrightarrow a^2-5a+4=0$
$\Leftrightarrow (a-1)(a-4)=0$
$\Leftrightarroe a=1$ hoặc $a=4$
Đến đây thì đơn giản rồi.
=>x^4+2x^2+1-4x^2-144x-1296=0
=>(x^2+1)^2-(2x+36)^2=0
=>(x^2+1-2x-36)(x^2+1+2x+36)=0
=>x^2-2x-35=0
=>(x-7)(x+5)=0
=>x=7 hoặc x=-5
Nhận thấy \(x=0\) ko phải nghiệm, chia 2 vế cho \(x^2\)
\(x^2-3x+9-\frac{3}{x}+\frac{1}{x^2}=0\)
\(\Leftrightarrow x^2+\frac{1}{x^2}-3\left(x+\frac{1}{x}\right)+9=0\)
Đặt \(x+\frac{1}{x}=t\Rightarrow x^2+\frac{1}{x^2}=t^2-2\)
pt trở thành: \(t^2-2-3t+9=0\)
\(\Leftrightarrow t^2-3t+7=0\) (vô nghiệm)
Vậy pt đã cho vô nghiệm
\(x\left(x+1\right)\left(x^2+x+1\right)=42\)
\(\left(x^2+x\right)\left(x^2+x+1\right)=42\)
Đặt \(p=x^2+x\)khi đó :
\(p\cdot\left(p+1\right)=42\)
Dễ thấy p và p+1 là 2 số liên tiếp, mặt khác : 42 = 6 . 7
\(\Rightarrow p=6\)
Hay \(x^2+x=6\)
\(x\left(x+1\right)=6\)
Dễ thấy x và x+1 là 2 số liên tiếp, mặt khác : 6 = 2 . 3
\(\Rightarrow x=2\)
Vậy x = 2
\(x\left(x+1\right)\left(x^2+x+1\right)=42.\)
\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x+1\right)-42=0\)(1)
Đặt: \(a=x^2+x\)
Khi đó phương trình (1) trở thành:
\(a\left(a+1\right)-42=0\)
\(\Leftrightarrow a^2+4-42=0\)
\(\Leftrightarrow a^2-6a+7a-42=0\)
\(\Leftrightarrow a\left(a-6\right)+7\left(a-6\right)=0\)
\(\Leftrightarrow\left(a-6\right)\left(a+7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a-6=0\\a+7=0\end{cases}}\)
Theo cách đặt, ta được:
\(\orbr{\begin{cases}x^2+x-6=0\left(2\right)\\x^2+x+7=0\left(3\right)\end{cases}}\)
Phương trình (2) \(\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\Leftrightarrow\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)
Phương trình (3) \(\Leftrightarrow x^2+x+\frac{1}{4}+\frac{27}{4}=0\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{27}{7}=0\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2=-\frac{27}{4}\)(vô lí)
Vậy: Nghiệm của phương trình là: \(S=\left\{-3;2\right\}\)