K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2023

\(\sqrt{x+1}=3x+7\) (ĐK: \(x\ge-1\))

\(\Leftrightarrow x+1=\left(3x+7\right)^2\)

\(\Leftrightarrow x+1=9x^2+42x+49\)

\(\Leftrightarrow x+1-9x^2-42x-49=0\)

\(\Leftrightarrow-9x^2-41x-48=0\)

Ta có: \(\Delta=\left(-41\right)^2-4\cdot-9\cdot-48=-48< 0\)

Vậy Pt vô nghiệm

24 tháng 7 2023

\(\sqrt[]{x+1}=3x-7\Leftrightarrow\left\{{}\begin{matrix}3x-7\ge0\\x+1=\left(3x-7\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{7}{3}\\x+1=9x^2-42x+49\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{7}{3}\\9x^2-43x+48=0\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Rightarrow\Delta=1849-1728=121\Rightarrow\sqrt[]{\Delta}=11\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{43+11}{2.9}=3\\x_2=\dfrac{43-11}{2.9}=\dfrac{32}{18}=\dfrac{16}{9}\end{matrix}\right.\)

so với điều kiện \(x\ge\dfrac{7}{3}\)

\(\Rightarrow x=3\)

17 tháng 7 2023

\(P=\sqrt[]{x}+\dfrac{3}{\sqrt[]{x}-1}\left(x>1\right)\)

\(P=\sqrt[]{x}-1+\dfrac{3}{\sqrt[]{x}-1}+1\)

Áp dụng bất đẳng thức Cauchy cho 2 số \(\sqrt[]{x}-1;\dfrac{3}{\sqrt[]{x}-1}\) ta được :

\(\sqrt[]{x}-1+\dfrac{3}{\sqrt[]{x}-1}\ge2\sqrt[]{\sqrt[]{x}-1.\dfrac{3}{\sqrt[]{x}-1}}\)

\(\Rightarrow\sqrt[]{x}-1+\dfrac{3}{\sqrt[]{x}-1}\ge2\sqrt[]{3}\)

\(\Rightarrow P=\sqrt[]{x}-1+\dfrac{3}{\sqrt[]{x}-1}+1\ge2\sqrt[]{3}+1\)

\(\Rightarrow Min\left(P\right)=2\sqrt[]{3}+1\)

17 tháng 7 2023

sorry mn cho e sửa lại đề ạ

tìm gtln của p ạ

 

16 tháng 7 2023

ĐKXĐ : \(x>0\)

Áp dụng bất đẳng thức Cauchy cho 2 số dương \(\sqrt{x};\dfrac{4}{\sqrt{x}}\) ta có 

\(P=\sqrt{x}+\dfrac{4}{\sqrt{x}}\ge2\sqrt{\sqrt{x}.\dfrac{4}{\sqrt{x}}}=4\)

Dấu "=" xảy ra khi \(\sqrt{x}=\dfrac{4}{\sqrt{x}}\Leftrightarrow x=4\)

16 tháng 7 2023

\(P=\sqrt[]{x}+\dfrac{4}{\sqrt[]{x}}\left(x>0\right)\)

\(P=\dfrac{x+4}{\sqrt[]{x}}=\dfrac{x+4}{\sqrt[]{x}}\)

Vì \(x>0;x+4>4\)

\(\Rightarrow P=\dfrac{x+4}{\sqrt[]{x}}>4\)

⇒ Không có giá trị nhỏ nhất

NV
28 tháng 6 2020

\(5x^4-2x^2-3x^2\sqrt{x^2+2}=4\)

Đặt \(\sqrt{x^2+2}=t>0\Rightarrow x^2=t^2-2\)

\(5\left(t^2-2\right)^2-2\left(t^2-2\right)-3t\left(t^2-2\right)-4=0\)

\(\Leftrightarrow5t^4-3t^3-22t^2+6t+20=0\)

Nhận thấy \(t=0\) không phải nghiệm, chia 2 vế cho \(t^2\)

\(\Rightarrow5\left(t^2+\frac{4}{t^2}\right)-3\left(t-\frac{2}{t}\right)-22=0\)

Đặt \(t-\frac{2}{t}=a\Rightarrow t^2+\frac{4}{t^2}=a^2+4\)

\(\Rightarrow5\left(a^2+4\right)-3a-22=0\Leftrightarrow5a^2-3a-2=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-\frac{2}{5}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}t-\frac{2}{t}=1\\t-\frac{2}{t}=-\frac{2}{5}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}t^2-t-2=0\\t^2+\frac{2}{5}t-2=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}t=-1\left(l\right)\\t=2\\t=\frac{\sqrt{51}-1}{5}\\t=\frac{-\sqrt{51}-1}{5}\left(l\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2+2}=2\\\sqrt{x^2+2}=\frac{\sqrt{51}-1}{5}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2=2\\x^2=\frac{2-2\sqrt{51}}{25}< 0\left(l\right)\end{matrix}\right.\) \(\Rightarrow x=\pm\sqrt{2}\)

17 tháng 7 2023

\(P=\dfrac{x+5}{\sqrt[]{x}+2}=\dfrac{x-4+9}{\sqrt[]{x}+2}=\dfrac{\left(\sqrt[]{x}+2\right)\left(\sqrt[]{x}-2\right)+9}{\sqrt[]{x}+2}\)

\(=\left(\sqrt[]{x}-2\right)+\dfrac{9}{\sqrt[]{x}+2}=\left(\sqrt[]{x}+2\right)+\dfrac{9}{\sqrt[]{x}+2}-4\)

Áp dụng bất đẳng thức Cauchy cho 2 số \(\left(\sqrt[]{x}+2\right);\dfrac{9}{\sqrt[]{x}+2}\left(x\ge0\right)\)

\(\left(\sqrt[]{x}+2\right)+\dfrac{9}{\sqrt[]{x}+2}\ge2\sqrt[]{\left(\sqrt[]{x}+2\right).\dfrac{9}{\sqrt[]{x}+2}}=2.3=6\)

\(\Rightarrow P=\left(\sqrt[]{x}+2\right)+\dfrac{9}{\sqrt[]{x}+2}-4\ge6-4=2\)

\(\Rightarrow P\ge2\Rightarrow Min\left(P\right)=2\)

 

17 tháng 7 2023

Bạn xem lại đề có phải \(P=x+\dfrac{5}{\sqrt[]{x}+2}\) không?

21 tháng 10 2021

Đề thiếu vế phải rồi bạn

21 tháng 10 2021

sorry mình quên hihi giải giúp mình nhé