K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 11 2019

a/ ĐKXĐ: ...

Đặt \(\sqrt{x+2006}=a\ge0\Rightarrow a^2-x=2006\)

Pt trở thành:

\(x^2+a=a^2-x\)

\(\Leftrightarrow x^2-a^2+x+a=0\)

\(\Leftrightarrow\left(x+a\right)\left(x-a+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=-x\\a=x+1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+2006}=-x\left(x\le0\right)\\\sqrt{x+2006}=x+1\left(x\ge-1\right)\end{matrix}\right.\) (1)

\(\Leftrightarrow\left[{}\begin{matrix}x+2006=x^2\\x+2006=\left(x+1\right)^2\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-x-2006=0\\x^2+x-2005=0\end{matrix}\right.\)

Nhớ loại nghiệm của từng pt phù hợp với (1)

NV
8 tháng 11 2019

b/ ĐKXĐ: ...

Đặt \(\sqrt{1-\sqrt{x}}=a\Rightarrow\sqrt{x}=1-a^2\Rightarrow x=\left(1-a^2\right)^2\) (với \(0\le a\le1\))

\(\left(1-a^2\right)^2=\left(2005-a^2\right)\left(1-a\right)\)

\(\Leftrightarrow\left(1+a\right)^2\left(1-a\right)^2=\left(2005-a^2\right)\left(1-a\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}a=1\\\left(1-a\right)\left(1+a\right)^2=2005-a^2\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow a^3-a+2004=0\)

Do \(0\le a\le1\Rightarrow a^3-a+2004>0\Rightarrow\) pt vô nghiệm

Vậy pt có nghiệm duy nhất \(x=0\)

20 tháng 8 2018

TXD x>= b, x<=a : x khác a=b

Đặt (a-x) = A, (x-b) = B

Vế phải = (a-x+x - b)/2 = (A + B)/2

2 x (A\(\sqrt[4]{B}\)+ B\(\sqrt[4]{A}\))= (A+B) (\(\sqrt[4]{A}\)\(\sqrt[4]{B}\))

                                               = A\(\sqrt[4]{A}\)+ B\(\sqrt[4]{A}\)+ B\(\sqrt[4]{B}\)+A\(\sqrt[4]{B}\)

A\(\sqrt[4]{B}\)+ B\(\sqrt[4]{A}\)= A\(\sqrt[4]{A}\)+ B\(\sqrt[4]{B}\)

\(\sqrt[4]{B}\)(A-B) = \(\sqrt[4]{A}\)(A-B)

=> A = B  => a-x = x-b => x = (a+b)/2 (a khác b)

1 tháng 12 2021

a,ĐKXĐ:\(x\ge2\)

\(4\sqrt{x-2}+\sqrt{9x-18}-\sqrt{\dfrac{x-2}{4}}=26\\ \Leftrightarrow4\sqrt{x-2}+3\sqrt{x-2}-\dfrac{\sqrt{x-2}}{2}=26\\ \Leftrightarrow8\sqrt{x-2}+6\sqrt{x-2}-\sqrt{x-2}=52\\ \Leftrightarrow13\sqrt{x-2}=52\\ \Leftrightarrow\sqrt{x-2}=4\\ \Leftrightarrow x-2=16\\ \Leftrightarrow x=18\left(tm\right)\)

b,ĐKXĐ:\(x\in R\)

\(3x+\sqrt{4x^2-8x+4}=1\\ \Leftrightarrow2\sqrt{x^2-2x+1}=1-3x\\ \Leftrightarrow\left|x-1\right|=\dfrac{1-3x}{2}\\ \Leftrightarrow\left[{}\begin{matrix}x-1=\dfrac{1-3x}{2}\\x-1=\dfrac{3x-1}{2}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}2x-2=1-3x\\2x-2=3x-1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{5}\left(tm\right)\\x=-1\left(tm\right)\end{matrix}\right.\)

c, ĐKXĐ:\(x\ge0\)

\(\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)=7\\ \Leftrightarrow\sqrt{x}\left(2\sqrt{x}+1\right)-2\left(2\sqrt{x}+1\right)=7\\ \Leftrightarrow2x+\sqrt{x}-4\sqrt{x}-2=7\\ \Leftrightarrow2x-3\sqrt{x}-9=0\\ \Leftrightarrow\left(2x+3\sqrt{x}\right)-\left(6\sqrt{x}+9\right)=0\\ \Leftrightarrow\sqrt{x}\left(2\sqrt{x}+3\right)-3\left(2\sqrt{x}+3\right)=0\\ \Leftrightarrow\left(\sqrt{x}-3\right)\left(2\sqrt{x}+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=3\\2\sqrt{x}=-3\left(vô.lí\right)\end{matrix}\right.\\ \Leftrightarrow x=9\left(tm\right)\)

 

18 tháng 7 2017

a)\(3\left(\sqrt{2x^2+1}-1\right)=x\left(1+3x+8\sqrt{2x^2+1}\right)\)

\(\Leftrightarrow3\left(\dfrac{2x^2+1-1}{\sqrt{2x^2+1}+1}\right)-x\left(1+3x+8\sqrt{2x^2+1}\right)=0\)

\(\Leftrightarrow\dfrac{6x^2}{\sqrt{2x^2+1}+1}-x\left(1+3x+8\sqrt{2x^2+1}\right)=0\)

\(\Leftrightarrow x\left(\dfrac{6x}{\sqrt{2x^2+1}+1}-\left(1+3x+8\sqrt{2x^2+1}\right)\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\\dfrac{6x}{\sqrt{2x^2+1}+1}=1+3x+8\sqrt{2x^2+1}\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}a=\sqrt{2x^2+1}\\b=3x\end{matrix}\right.\left(a>0\right)\) thì

\(pt\left(2\right)\Leftrightarrow\)\(\dfrac{2b}{a+1}=1+b+8a\)

\(\Rightarrow\left\{{}\begin{matrix}a=-17\\b=120\end{matrix}\right.;\left\{{}\begin{matrix}a=-8\\b=49\end{matrix}\right.;\left\{{}\begin{matrix}a=-5\\b=26\end{matrix}\right.;\left\{{}\begin{matrix}a=-2\\b=5\end{matrix}\right.;\left\{{}\begin{matrix}a=-0\\b=1\end{matrix}\right.\) (loại vì \(a>0\))

Hay pt vô nghiệm

18 tháng 7 2017

phần a liên hợp nhưng cx có yếu tố đặt ẩn là done r` nhé ;v còn phần b dg nghĩ có lẽ liên hợp nốt mà chủ thớt khó quá:v

31 tháng 10 2015

c) (d tương tự)

\(\sqrt[3]{7-16x}=a;\text{ }\sqrt{2x+8}=b\Rightarrow a^3+8b^2=71\)

và \(a+2b=5\)

--> Thế

\(a\text{) }\sqrt{1-x^2}=y\Rightarrow x^2+y^2=1\)

Mà \(x^3+y^3=\sqrt{2}xy\Rightarrow\left(x^3+y^3\right)^2=2x^2y^2=2x^2y^2\left(x^2+y^2\right)\text{ (*)}\)

Tới đây có dạng đẳng cấp, có thể phân tích nhân tử hoặc chia xuống.

y = 0 thì x = 1 (không thỏa pt ban đầu)

Xét y khác 0. Chia cả 2 vế của (*) cho y6

\(\text{(*)}\Leftrightarrow\left(\frac{x^3}{y^3}+1\right)^2=2\frac{x^2}{y^2}\left(\frac{x^2}{y^2}+1\right)\)\(\Leftrightarrow\left(\frac{x}{y}-1\right)\left[\left(\frac{x}{y}\right)^5+\left(\frac{x}{y}\right)^4+\left(\frac{x}{y}\right)^3+3\left(\frac{x}{y}\right)^2+\frac{x}{y}-1\right]=0\)

Không khả quan lắm :)) bạn tự tìm cách khác nhé.

22 tháng 10 2021

a)√x−2+12√4x−8=√9x−18−2

=>√x−2+12√4(x−2)=√9(x−2)−2

=>√x−2+12√22(x−2)=√32(x−2)−2

=>√x−2+12.2√(x−2)=3√(x−2)−2

=>√x−2+24√(x−2)=3√(x−2)−2

=>√x−2+24√(x−2)-3√(x−2)=-2

=>√x−2(1+24-3)=-2

=>22√x−2=-2

=>√x−2=-2/22

=>√x−2=-1/11

=>x−2=1/121

=>x=1/121+2=243/121

b)√(3x−1)2=5

=>|3x−1|=5

=>3x−1=5 hoặc 3x−1=-5

=>3x=6 hoặc 3x=-4

=>x=2 hoặc x=-4/3

 

21 tháng 9 2020

Đặt \(u=\sqrt{x+1};t=\sqrt{1-x};\text{đ}k:-1\le x\le1\)

Phương trình trở thành:

\(u+2u^2=-t^2+t+3ut\Leftrightarrow\left(u-t\right)^2+u\left(u-t\right)+\left(u-t\right)=0\)

\(\Leftrightarrow\left(u-t\right)\left(2u-t+1\right)=0\Leftrightarrow\orbr{\begin{cases}u=t\\2u+1=t\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x+1}=\sqrt{1-x}\\2\sqrt{x+1}+1=\sqrt{1-x}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{-24}{25}\end{cases}}}\)

21 tháng 9 2020

mình dùng cách khác nhé :((

\(\sqrt{x+1}+2\left(x+1\right)=x-1+\sqrt{1-x}+3\sqrt{1-x^2}\left(đk:-1\le x\le1\right)\)

\(< =>\sqrt{x+1}-1+2x+2-3=x-1+\sqrt{1-x}-1+3\sqrt{1-x^2}-3\)

\(< =>\frac{x}{\sqrt{x+1}+1}+2x-1-x+1=-\frac{x}{\sqrt{1-x}+1}+\frac{9\left(1-x^2-1\right)}{3\sqrt{1-x^2}+3}\)

\(< =>\frac{x}{\sqrt{x+1}+1}+x+\frac{x}{\sqrt{1-x}+1}+\frac{9x^2}{3\sqrt{1-x^2}+3}=0\)

\(< =>x\left(\frac{1}{\sqrt{x+1}+1}+1+\frac{1}{\sqrt{1+x}+1}+\frac{9x}{3\sqrt{1-x^2}+3}\right)=0< =>x=0\)

rồi đến đây dùng đk đánh giá cái ngoặc khác 0 là ok

14 tháng 7 2017

\(x^2+\left(3-\sqrt{x^2+2}\right)x=1+2\sqrt{x^2+2}\)

\(pt\Leftrightarrow x^2+3x-1-x\sqrt{x^2+2}=2\sqrt{x^2+2}\)

\(\Leftrightarrow x^2-7-\left(x\sqrt{x^2+2}-3x\right)=2\sqrt{x^2+2}-6\)

\(\Leftrightarrow x^2-7-\dfrac{x^2\left(x^2+2\right)-9x^2}{x\sqrt{x^2+2}+3x}=\dfrac{4\left(x^2+2\right)-36}{2\sqrt{x^2+2}+6}\)

\(\Leftrightarrow x^2-7-\dfrac{x^4-7x^2}{x\sqrt{x^2+2}+3x}-\dfrac{4x^2-28}{2\sqrt{x^2+2}+6}=0\)

\(\Leftrightarrow x^2-7-\dfrac{x^2\left(x^2-7\right)}{x\sqrt{x^2+2}+3x}-\dfrac{4\left(x^2-7\right)}{2\sqrt{x^2+2}+6}=0\)

\(\Leftrightarrow\left(x^2-7\right)\left(1-\dfrac{x^2}{x\sqrt{x^2+2}+3x}-\dfrac{4}{2\sqrt{x^2+2}+6}\right)=0\)

Dễ thấy: \(1-\dfrac{x^2}{x\sqrt{x^2+2}+3x}-\dfrac{4}{2\sqrt{x^2+2}+6}>0\)

\(\Rightarrow x^2-7=0\Rightarrow x=\pm\sqrt{7}\)

14 tháng 9 2017

1) ĐK: \(x\ge-2012\)

Đặt \(\sqrt{x+2012}=t\left(t\ge0\right)\Rightarrow x=t^2-2012\)

Ta có hệ \(\hept{\begin{cases}x^2+t=2012\\-x+t^2=2012\end{cases}}\)

\(\Rightarrow x^2+t-t^2+x=0\Rightarrow\left(x+t\right)\left(x-t+1\right)=0\)

Với \(x+t=0\Leftrightarrow\sqrt{x+2012}=x\Rightarrow x^2-x-2012=0\Rightarrow x=\frac{\sqrt{8049}+1}{2}\)

Với \(x-t+1=0\Leftrightarrow\sqrt{x+2012}=x+1\Rightarrow x^2+x-2011=0\Rightarrow x=\frac{\sqrt{8045}-1}{2}\)

2) ĐK \(\orbr{\begin{cases}x< -\frac{1}{3}\\x>1\end{cases}}\)

Đặt \(\sqrt{\frac{3x+1}{x-1}}=t\), phương trình trở thành \(4t+\frac{1}{t}=4\Rightarrow\frac{4t^2-4t+1}{t}=0\Rightarrow t=\frac{1}{2}\)

Khi đó ta có \(\sqrt{\frac{3x+1}{x-1}}=\frac{1}{2}\Rightarrow\frac{3x+1}{x-1}=\frac{1}{4}\Rightarrow11x+5=0\)

\(\Rightarrow x=-\frac{5}{11}\left(tm\right)\)

c) TH1: \(x\le-1\), phương trình trở thành \(\left(x-3\right)\left(x+1\right)-4\sqrt{\left(x-3\right)\left(x+1\right)}+3=0\)

Đặt \(\sqrt{\left(x-3\right)\left(x+1\right)}=t\left(t\ge0\right)\) thì \(t^2-4t+3=0\Rightarrow\orbr{\begin{cases}t=1\\t=3\end{cases}}\)

Với \(t=1\Rightarrow\left(x-3\right)\left(x+1\right)=1\Rightarrow x^2-2x-4=0\Rightarrow\orbr{\begin{cases}x=1+\sqrt{5}\left(l\right)\\x=1-\sqrt{5}\left(tm\right)\end{cases}}\)

Với \(t=3\Rightarrow\left(x-3\right)\left(x+1\right)=9\Rightarrow x^2-2x-12=0\Rightarrow\orbr{\begin{cases}x=1+\sqrt{13}\left(l\right)\\x=1-\sqrt{13}\left(tm\right)\end{cases}}\)

Với \(x>3\), phương trình trở thành \(\left(x-3\right)\left(x+1\right)+4\sqrt{\left(x-3\right)\left(x+1\right)}+3=0\)

Đặt \(\sqrt{\left(x-3\right)\left(x+1\right)}=t\left(t\ge0\right)\) thì \(t^2+4t+3=0\Rightarrow\orbr{\begin{cases}t=-1\\t=-3\end{cases}\left(l\right)}\)

Vậy pt có 2 nghiệm \(x=1-\sqrt{5}\) hoặc \(x=1-\sqrt{13}\)